MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcn Structured version   Unicode version

Theorem logcn 23153
Description: The logarithm function is continuous away from the branch cut at negative reals. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
Assertion
Ref Expression
logcn  |-  ( log  |`  D )  e.  ( D -cn-> CC )

Proof of Theorem logcn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logf1o 23077 . . . . . . 7  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
2 f1of 5822 . . . . . . 7  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  log : ( CC 
\  { 0 } ) --> ran  log )
31, 2ax-mp 5 . . . . . 6  |-  log :
( CC  \  {
0 } ) --> ran 
log
4 logcn.d . . . . . . 7  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
54logdmss 23148 . . . . . 6  |-  D  C_  ( CC  \  { 0 } )
6 fssres 5757 . . . . . 6  |-  ( ( log : ( CC 
\  { 0 } ) --> ran  log  /\  D  C_  ( CC  \  {
0 } ) )  ->  ( log  |`  D ) : D --> ran  log )
73, 5, 6mp2an 672 . . . . 5  |-  ( log  |`  D ) : D --> ran  log
8 ffn 5737 . . . . 5  |-  ( ( log  |`  D ) : D --> ran  log  ->  ( log  |`  D )  Fn  D )
97, 8ax-mp 5 . . . 4  |-  ( log  |`  D )  Fn  D
10 dffn5 5918 . . . 4  |-  ( ( log  |`  D )  Fn  D  <->  ( log  |`  D )  =  ( x  e.  D  |->  ( ( log  |`  D ) `  x
) ) )
119, 10mpbi 208 . . 3  |-  ( log  |`  D )  =  ( x  e.  D  |->  ( ( log  |`  D ) `
 x ) )
12 fvres 5886 . . . . 5  |-  ( x  e.  D  ->  (
( log  |`  D ) `
 x )  =  ( log `  x
) )
134ellogdm 23145 . . . . . . . 8  |-  ( x  e.  D  <->  ( x  e.  CC  /\  ( x  e.  RR  ->  x  e.  RR+ ) ) )
1413simplbi 460 . . . . . . 7  |-  ( x  e.  D  ->  x  e.  CC )
154logdmn0 23146 . . . . . . 7  |-  ( x  e.  D  ->  x  =/=  0 )
1614, 15logcld 23083 . . . . . 6  |-  ( x  e.  D  ->  ( log `  x )  e.  CC )
1716replimd 13041 . . . . 5  |-  ( x  e.  D  ->  ( log `  x )  =  ( ( Re `  ( log `  x ) )  +  ( _i  x.  ( Im `  ( log `  x ) ) ) ) )
18 relog 23106 . . . . . . . 8  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( Re `  ( log `  x ) )  =  ( log `  ( abs `  x ) ) )
1914, 15, 18syl2anc 661 . . . . . . 7  |-  ( x  e.  D  ->  (
Re `  ( log `  x ) )  =  ( log `  ( abs `  x ) ) )
2014, 15absrpcld 13290 . . . . . . . 8  |-  ( x  e.  D  ->  ( abs `  x )  e.  RR+ )
21 fvres 5886 . . . . . . . 8  |-  ( ( abs `  x )  e.  RR+  ->  ( ( log  |`  RR+ ) `  ( abs `  x ) )  =  ( log `  ( abs `  x
) ) )
2220, 21syl 16 . . . . . . 7  |-  ( x  e.  D  ->  (
( log  |`  RR+ ) `  ( abs `  x
) )  =  ( log `  ( abs `  x ) ) )
2319, 22eqtr4d 2501 . . . . . 6  |-  ( x  e.  D  ->  (
Re `  ( log `  x ) )  =  ( ( log  |`  RR+ ) `  ( abs `  x
) ) )
2423oveq1d 6311 . . . . 5  |-  ( x  e.  D  ->  (
( Re `  ( log `  x ) )  +  ( _i  x.  ( Im `  ( log `  x ) ) ) )  =  ( ( ( log  |`  RR+ ) `  ( abs `  x
) )  +  ( _i  x.  ( Im
`  ( log `  x
) ) ) ) )
2512, 17, 243eqtrd 2502 . . . 4  |-  ( x  e.  D  ->  (
( log  |`  D ) `
 x )  =  ( ( ( log  |`  RR+ ) `  ( abs `  x ) )  +  ( _i  x.  ( Im `  ( log `  x ) ) ) ) )
2625mpteq2ia 4539 . . 3  |-  ( x  e.  D  |->  ( ( log  |`  D ) `  x ) )  =  ( x  e.  D  |->  ( ( ( log  |`  RR+ ) `  ( abs `  x ) )  +  ( _i  x.  ( Im `  ( log `  x ) ) ) ) )
2711, 26eqtri 2486 . 2  |-  ( log  |`  D )  =  ( x  e.  D  |->  ( ( ( log  |`  RR+ ) `  ( abs `  x
) )  +  ( _i  x.  ( Im
`  ( log `  x
) ) ) ) )
28 eqid 2457 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2928addcn 21494 . . . . 5  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
3029a1i 11 . . . 4  |-  ( T. 
->  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
3128cnfldtopon 21415 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
3214ssriv 3503 . . . . . . . 8  |-  D  C_  CC
33 resttopon 19788 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  D  C_  CC )  ->  (
( TopOpen ` fld )t  D )  e.  (TopOn `  D ) )
3431, 32, 33mp2an 672 . . . . . . 7  |-  ( (
TopOpen ` fld )t  D )  e.  (TopOn `  D )
3534a1i 11 . . . . . 6  |-  ( T. 
->  ( ( TopOpen ` fld )t  D )  e.  (TopOn `  D ) )
36 absf 13181 . . . . . . . . . . . 12  |-  abs : CC
--> RR
37 fssres 5757 . . . . . . . . . . . 12  |-  ( ( abs : CC --> RR  /\  D  C_  CC )  -> 
( abs  |`  D ) : D --> RR )
3836, 32, 37mp2an 672 . . . . . . . . . . 11  |-  ( abs  |`  D ) : D --> RR
3938a1i 11 . . . . . . . . . 10  |-  ( T. 
->  ( abs  |`  D ) : D --> RR )
4039feqmptd 5926 . . . . . . . . 9  |-  ( T. 
->  ( abs  |`  D )  =  ( x  e.  D  |->  ( ( abs  |`  D ) `  x
) ) )
41 fvres 5886 . . . . . . . . . 10  |-  ( x  e.  D  ->  (
( abs  |`  D ) `
 x )  =  ( abs `  x
) )
4241mpteq2ia 4539 . . . . . . . . 9  |-  ( x  e.  D  |->  ( ( abs  |`  D ) `  x ) )  =  ( x  e.  D  |->  ( abs `  x
) )
4340, 42syl6eq 2514 . . . . . . . 8  |-  ( T. 
->  ( abs  |`  D )  =  ( x  e.  D  |->  ( abs `  x
) ) )
44 ffn 5737 . . . . . . . . . . 11  |-  ( ( abs  |`  D ) : D --> RR  ->  ( abs  |`  D )  Fn  D )
4538, 44ax-mp 5 . . . . . . . . . 10  |-  ( abs  |`  D )  Fn  D
4641, 20eqeltrd 2545 . . . . . . . . . . 11  |-  ( x  e.  D  ->  (
( abs  |`  D ) `
 x )  e.  RR+ )
4746rgen 2817 . . . . . . . . . 10  |-  A. x  e.  D  ( ( abs  |`  D ) `  x )  e.  RR+
48 ffnfv 6058 . . . . . . . . . 10  |-  ( ( abs  |`  D ) : D --> RR+  <->  ( ( abs  |`  D )  Fn  D  /\  A. x  e.  D  ( ( abs  |`  D ) `
 x )  e.  RR+ ) )
4945, 47, 48mpbir2an 920 . . . . . . . . 9  |-  ( abs  |`  D ) : D --> RR+
50 rpssre 11255 . . . . . . . . . . 11  |-  RR+  C_  RR
51 ax-resscn 9566 . . . . . . . . . . 11  |-  RR  C_  CC
5250, 51sstri 3508 . . . . . . . . . 10  |-  RR+  C_  CC
53 abscncf 21530 . . . . . . . . . . 11  |-  abs  e.  ( CC -cn-> RR )
54 rescncf 21526 . . . . . . . . . . 11  |-  ( D 
C_  CC  ->  ( abs 
e.  ( CC -cn-> RR )  ->  ( abs  |`  D )  e.  ( D -cn-> RR ) ) )
5532, 53, 54mp2 9 . . . . . . . . . 10  |-  ( abs  |`  D )  e.  ( D -cn-> RR )
56 cncffvrn 21527 . . . . . . . . . 10  |-  ( (
RR+  C_  CC  /\  ( abs  |`  D )  e.  ( D -cn-> RR ) )  ->  ( ( abs  |`  D )  e.  ( D -cn-> RR+ )  <->  ( abs  |`  D ) : D --> RR+ ) )
5752, 55, 56mp2an 672 . . . . . . . . 9  |-  ( ( abs  |`  D )  e.  ( D -cn-> RR+ )  <->  ( abs  |`  D ) : D --> RR+ )
5849, 57mpbir 209 . . . . . . . 8  |-  ( abs  |`  D )  e.  ( D -cn-> RR+ )
5943, 58syl6eqelr 2554 . . . . . . 7  |-  ( T. 
->  ( x  e.  D  |->  ( abs `  x
) )  e.  ( D -cn-> RR+ ) )
60 eqid 2457 . . . . . . . . 9  |-  ( (
TopOpen ` fld )t  D )  =  ( ( TopOpen ` fld )t  D )
61 eqid 2457 . . . . . . . . 9  |-  ( (
TopOpen ` fld )t 
RR+ )  =  ( ( TopOpen ` fld )t  RR+ )
6228, 60, 61cncfcn 21538 . . . . . . . 8  |-  ( ( D  C_  CC  /\  RR+  C_  CC )  ->  ( D -cn-> RR+ )  =  ( (
( TopOpen ` fld )t  D )  Cn  (
( TopOpen ` fld )t  RR+ ) ) )
6332, 52, 62mp2an 672 . . . . . . 7  |-  ( D
-cn->
RR+ )  =  ( ( ( TopOpen ` fld )t  D )  Cn  (
( TopOpen ` fld )t  RR+ ) )
6459, 63syl6eleq 2555 . . . . . 6  |-  ( T. 
->  ( x  e.  D  |->  ( abs `  x
) )  e.  ( ( ( TopOpen ` fld )t  D )  Cn  (
( TopOpen ` fld )t  RR+ ) ) )
65 ssid 3518 . . . . . . . . . 10  |-  CC  C_  CC
66 cncfss 21528 . . . . . . . . . 10  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( RR+ -cn-> RR )  C_  ( RR+ -cn-> CC ) )
6751, 65, 66mp2an 672 . . . . . . . . 9  |-  ( RR+ -cn-> RR )  C_  ( RR+ -cn-> CC )
68 relogcn 23144 . . . . . . . . 9  |-  ( log  |`  RR+ )  e.  (
RR+ -cn-> RR )
6967, 68sselii 3496 . . . . . . . 8  |-  ( log  |`  RR+ )  e.  (
RR+ -cn-> CC )
7069a1i 11 . . . . . . 7  |-  ( T. 
->  ( log  |`  RR+ )  e.  ( RR+ -cn-> CC ) )
7128cnfldtop 21416 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  e.  Top
7231toponunii 19559 . . . . . . . . . . . 12  |-  CC  =  U. ( TopOpen ` fld )
7372restid 14850 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
7471, 73ax-mp 5 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
7574eqcomi 2470 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
7628, 61, 75cncfcn 21538 . . . . . . . 8  |-  ( (
RR+  C_  CC  /\  CC  C_  CC )  ->  ( RR+ -cn-> CC )  =  ( ( ( TopOpen ` fld )t  RR+ )  Cn  ( TopOpen
` fld
) ) )
7752, 65, 76mp2an 672 . . . . . . 7  |-  ( RR+ -cn-> CC )  =  ( ( ( TopOpen ` fld )t  RR+ )  Cn  ( TopOpen
` fld
) )
7870, 77syl6eleq 2555 . . . . . 6  |-  ( T. 
->  ( log  |`  RR+ )  e.  ( ( ( TopOpen ` fld )t  RR+ )  Cn  ( TopOpen ` fld ) ) )
7935, 64, 78cnmpt11f 20290 . . . . 5  |-  ( T. 
->  ( x  e.  D  |->  ( ( log  |`  RR+ ) `  ( abs `  x
) ) )  e.  ( ( ( TopOpen ` fld )t  D
)  Cn  ( TopOpen ` fld )
) )
8028, 60, 75cncfcn 21538 . . . . . 6  |-  ( ( D  C_  CC  /\  CC  C_  CC )  ->  ( D -cn-> CC )  =  ( ( ( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) ) )
8132, 65, 80mp2an 672 . . . . 5  |-  ( D
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  D )  Cn  ( TopOpen
` fld
) )
8279, 81syl6eleqr 2556 . . . 4  |-  ( T. 
->  ( x  e.  D  |->  ( ( log  |`  RR+ ) `  ( abs `  x
) ) )  e.  ( D -cn-> CC ) )
8316imcld 13039 . . . . . . . 8  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  e.  RR )
8483recnd 9639 . . . . . . 7  |-  ( x  e.  D  ->  (
Im `  ( log `  x ) )  e.  CC )
8584adantl 466 . . . . . 6  |-  ( ( T.  /\  x  e.  D )  ->  (
Im `  ( log `  x ) )  e.  CC )
86 eqidd 2458 . . . . . 6  |-  ( T. 
->  ( x  e.  D  |->  ( Im `  ( log `  x ) ) )  =  ( x  e.  D  |->  ( Im
`  ( log `  x
) ) ) )
87 eqidd 2458 . . . . . 6  |-  ( T. 
->  ( y  e.  CC  |->  ( _i  x.  y
) )  =  ( y  e.  CC  |->  ( _i  x.  y ) ) )
88 oveq2 6304 . . . . . 6  |-  ( y  =  ( Im `  ( log `  x ) )  ->  ( _i  x.  y )  =  ( _i  x.  ( Im
`  ( log `  x
) ) ) )
8985, 86, 87, 88fmptco 6065 . . . . 5  |-  ( T. 
->  ( ( y  e.  CC  |->  ( _i  x.  y ) )  o.  ( x  e.  D  |->  ( Im `  ( log `  x ) ) ) )  =  ( x  e.  D  |->  ( _i  x.  ( Im
`  ( log `  x
) ) ) ) )
90 cncfss 21528 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( D -cn-> RR )  C_  ( D -cn-> CC ) )
9151, 65, 90mp2an 672 . . . . . . . 8  |-  ( D
-cn-> RR )  C_  ( D -cn-> CC )
924logcnlem5 23152 . . . . . . . 8  |-  ( x  e.  D  |->  ( Im
`  ( log `  x
) ) )  e.  ( D -cn-> RR )
9391, 92sselii 3496 . . . . . . 7  |-  ( x  e.  D  |->  ( Im
`  ( log `  x
) ) )  e.  ( D -cn-> CC )
9493a1i 11 . . . . . 6  |-  ( T. 
->  ( x  e.  D  |->  ( Im `  ( log `  x ) ) )  e.  ( D
-cn-> CC ) )
95 ax-icn 9568 . . . . . . 7  |-  _i  e.  CC
96 eqid 2457 . . . . . . . 8  |-  ( y  e.  CC  |->  ( _i  x.  y ) )  =  ( y  e.  CC  |->  ( _i  x.  y ) )
9796mulc1cncf 21534 . . . . . . 7  |-  ( _i  e.  CC  ->  (
y  e.  CC  |->  ( _i  x.  y ) )  e.  ( CC
-cn-> CC ) )
9895, 97mp1i 12 . . . . . 6  |-  ( T. 
->  ( y  e.  CC  |->  ( _i  x.  y
) )  e.  ( CC -cn-> CC ) )
9994, 98cncfco 21536 . . . . 5  |-  ( T. 
->  ( ( y  e.  CC  |->  ( _i  x.  y ) )  o.  ( x  e.  D  |->  ( Im `  ( log `  x ) ) ) )  e.  ( D -cn-> CC ) )
10089, 99eqeltrrd 2546 . . . 4  |-  ( T. 
->  ( x  e.  D  |->  ( _i  x.  (
Im `  ( log `  x ) ) ) )  e.  ( D
-cn-> CC ) )
10128, 30, 82, 100cncfmpt2f 21543 . . 3  |-  ( T. 
->  ( x  e.  D  |->  ( ( ( log  |`  RR+ ) `  ( abs `  x ) )  +  ( _i  x.  ( Im `  ( log `  x ) ) ) ) )  e.  ( D -cn-> CC ) )
102101trud 1404 . 2  |-  ( x  e.  D  |->  ( ( ( log  |`  RR+ ) `  ( abs `  x
) )  +  ( _i  x.  ( Im
`  ( log `  x
) ) ) ) )  e.  ( D
-cn-> CC )
10327, 102eqeltri 2541 1  |-  ( log  |`  D )  e.  ( D -cn-> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1395   T. wtru 1396    e. wcel 1819    =/= wne 2652   A.wral 2807    \ cdif 3468    C_ wss 3471   {csn 4032    |-> cmpt 4515   ran crn 5009    |` cres 5010    o. ccom 5012    Fn wfn 5589   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   _ici 9511    + caddc 9512    x. cmul 9514   -oocmnf 9643   RR+crp 11245   (,]cioc 11555   Recre 12941   Imcim 12942   abscabs 13078   ↾t crest 14837   TopOpenctopn 14838  ℂfldccnfld 18546   Topctop 19520  TopOnctopon 19521    Cn ccn 19851    tX ctx 20186   -cn->ccncf 21505   logclog 23067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ioc 11559  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11821  df-fl 11931  df-mod 11999  df-seq 12110  df-exp 12169  df-fac 12356  df-bc 12383  df-hash 12408  df-shft 12911  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-limsup 13305  df-clim 13322  df-rlim 13323  df-sum 13520  df-ef 13814  df-sin 13816  df-cos 13817  df-tan 13818  df-pi 13819  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-starv 14726  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-unif 14734  df-hom 14735  df-cco 14736  df-rest 14839  df-topn 14840  df-0g 14858  df-gsum 14859  df-topgen 14860  df-pt 14861  df-prds 14864  df-xrs 14918  df-qtop 14923  df-imas 14924  df-xps 14926  df-mre 15002  df-mrc 15003  df-acs 15005  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-submnd 16093  df-mulg 16186  df-cntz 16481  df-cmn 16926  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-mopn 18541  df-fbas 18542  df-fg 18543  df-cnfld 18547  df-top 19525  df-bases 19527  df-topon 19528  df-topsp 19529  df-cld 19646  df-ntr 19647  df-cls 19648  df-nei 19725  df-lp 19763  df-perf 19764  df-cn 19854  df-cnp 19855  df-haus 19942  df-cmp 20013  df-tx 20188  df-hmeo 20381  df-fil 20472  df-fm 20564  df-flim 20565  df-flf 20566  df-xms 20948  df-ms 20949  df-tms 20950  df-cncf 21507  df-limc 22395  df-dv 22396  df-log 23069
This theorem is referenced by:  dvlog  23157  efopnlem2  23163  cxpcn  23244  lgamgulmlem2  28747  lgamcvg2  28772  dvcncxp1  30262  areacirclem4  30272
  Copyright terms: Public domain W3C validator