MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcl Structured version   Unicode version

Theorem logcl 22825
Description: Closure of the natural logarithm function. (Contributed by NM, 21-Apr-2008.) (Revised by Mario Carneiro, 23-Sep-2014.)
Assertion
Ref Expression
logcl  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )

Proof of Theorem logcl
StepHypRef Expression
1 logrncl 22824 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  ran  log )
2 logrncn 22819 . 2  |-  ( ( log `  A )  e.  ran  log  ->  ( log `  A )  e.  CC )
31, 2syl 16 1  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1802    =/= wne 2636   ran crn 4987   ` cfv 5575   CCcc 9490   0cc0 9492   logclog 22811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-int 4269  df-iun 4314  df-iin 4315  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-se 4826  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-isom 5584  df-riota 6239  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6522  df-om 6683  df-1st 6782  df-2nd 6783  df-supp 6901  df-recs 7041  df-rdg 7075  df-1o 7129  df-2o 7130  df-oadd 7133  df-er 7310  df-map 7421  df-pm 7422  df-ixp 7469  df-en 7516  df-dom 7517  df-sdom 7518  df-fin 7519  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9809  df-neg 9810  df-div 10210  df-nn 10540  df-2 10597  df-3 10598  df-4 10599  df-5 10600  df-6 10601  df-7 10602  df-8 10603  df-9 10604  df-10 10605  df-n0 10799  df-z 10868  df-dec 10982  df-uz 11088  df-q 11189  df-rp 11227  df-xneg 11324  df-xadd 11325  df-xmul 11326  df-ioo 11539  df-ioc 11540  df-ico 11541  df-icc 11542  df-fz 11679  df-fzo 11801  df-fl 11905  df-mod 11973  df-seq 12084  df-exp 12143  df-fac 12330  df-bc 12357  df-hash 12382  df-shft 12876  df-cj 12908  df-re 12909  df-im 12910  df-sqrt 13044  df-abs 13045  df-limsup 13270  df-clim 13287  df-rlim 13288  df-sum 13485  df-ef 13678  df-sin 13680  df-cos 13681  df-pi 13683  df-struct 14508  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-ress 14513  df-plusg 14584  df-mulr 14585  df-starv 14586  df-sca 14587  df-vsca 14588  df-ip 14589  df-tset 14590  df-ple 14591  df-ds 14593  df-unif 14594  df-hom 14595  df-cco 14596  df-rest 14694  df-topn 14695  df-0g 14713  df-gsum 14714  df-topgen 14715  df-pt 14716  df-prds 14719  df-xrs 14773  df-qtop 14778  df-imas 14779  df-xps 14781  df-mre 14857  df-mrc 14858  df-acs 14860  df-mgm 15743  df-sgrp 15782  df-mnd 15792  df-submnd 15838  df-mulg 15931  df-cntz 16226  df-cmn 16671  df-psmet 18282  df-xmet 18283  df-met 18284  df-bl 18285  df-mopn 18286  df-fbas 18287  df-fg 18288  df-cnfld 18292  df-top 19269  df-bases 19271  df-topon 19272  df-topsp 19273  df-cld 19390  df-ntr 19391  df-cls 19392  df-nei 19469  df-lp 19507  df-perf 19508  df-cn 19598  df-cnp 19599  df-haus 19686  df-tx 19933  df-hmeo 20126  df-fil 20217  df-fm 20309  df-flim 20310  df-flf 20311  df-xms 20693  df-ms 20694  df-tms 20695  df-cncf 21252  df-limc 22140  df-dv 22141  df-log 22813
This theorem is referenced by:  logcld  22827  abslogimle  22830  lognegb  22843  explog  22847  relog  22850  eflogeq  22855  logcj  22860  efiarg  22861  argregt0  22864  argrege0  22865  argimgt0  22866  argimlt0  22867  logimul  22868  logneg2  22869  logmul2  22870  logdiv2  22871  abslogle  22872  tanarg  22873  cxpcl  22924  cxpne0  22927  cxpadd  22929  abscxp2  22943  cxpsqrtlem  22952  abscxpbnd  22996  ang180lem2  23011  ang180lem3  23012  log2cnv  23144  efrlim  23168  logbcl  27883  logbid1  27884  proot1ex  31134
  Copyright terms: Public domain W3C validator