MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ublem2 Structured version   Unicode version

Theorem log2ublem2 23394
Description: Lemma for log2ub 23396. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
log2ublem2.1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  sum_ n  e.  ( 0 ... K ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  <_  (
2  x.  B )
log2ublem2.2  |-  B  e. 
NN0
log2ublem2.3  |-  F  e. 
NN0
log2ublem2.4  |-  N  e. 
NN0
log2ublem2.5  |-  ( N  -  1 )  =  K
log2ublem2.6  |-  ( B  +  F )  =  G
log2ublem2.7  |-  M  e. 
NN0
log2ublem2.8  |-  ( M  +  N )  =  3
log2ublem2.9  |-  ( ( 5  x.  7 )  x.  ( 9 ^ M ) )  =  ( ( ( 2  x.  N )  +  1 )  x.  F
)
Assertion
Ref Expression
log2ublem2  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  sum_ n  e.  ( 0 ... N ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  <_  (
2  x.  G )
Distinct variable groups:    n, K    n, N
Allowed substitution hints:    B( n)    F( n)    G( n)    M( n)

Proof of Theorem log2ublem2
StepHypRef Expression
1 log2ublem2.1 . 2  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  sum_ n  e.  ( 0 ... K ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  <_  (
2  x.  B )
2 fzfid 11986 . . . 4  |-  ( T. 
->  ( 0 ... K
)  e.  Fin )
3 elfznn0 11693 . . . . . 6  |-  ( n  e.  ( 0 ... K )  ->  n  e.  NN0 )
43adantl 464 . . . . 5  |-  ( ( T.  /\  n  e.  ( 0 ... K
) )  ->  n  e.  NN0 )
5 2re 10522 . . . . . 6  |-  2  e.  RR
6 3nn 10611 . . . . . . . 8  |-  3  e.  NN
7 2nn0 10729 . . . . . . . . . 10  |-  2  e.  NN0
8 nn0mulcl 10749 . . . . . . . . . 10  |-  ( ( 2  e.  NN0  /\  n  e.  NN0 )  -> 
( 2  x.  n
)  e.  NN0 )
97, 8mpan 668 . . . . . . . . 9  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e. 
NN0 )
10 nn0p1nn 10752 . . . . . . . . 9  |-  ( ( 2  x.  n )  e.  NN0  ->  ( ( 2  x.  n )  +  1 )  e.  NN )
119, 10syl 16 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( ( 2  x.  n )  +  1 )  e.  NN )
12 nnmulcl 10475 . . . . . . . 8  |-  ( ( 3  e.  NN  /\  ( ( 2  x.  n )  +  1 )  e.  NN )  ->  ( 3  x.  ( ( 2  x.  n )  +  1 ) )  e.  NN )
136, 11, 12sylancr 661 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 3  x.  ( ( 2  x.  n )  +  1 ) )  e.  NN )
14 9nn 10617 . . . . . . . 8  |-  9  e.  NN
15 nnexpcl 12082 . . . . . . . 8  |-  ( ( 9  e.  NN  /\  n  e.  NN0 )  -> 
( 9 ^ n
)  e.  NN )
1614, 15mpan 668 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 9 ^ n )  e.  NN )
1713, 16nnmulcld 10500 . . . . . 6  |-  ( n  e.  NN0  ->  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) )  e.  NN )
18 nndivre 10488 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) )  e.  NN )  ->  ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  e.  RR )
195, 17, 18sylancr 661 . . . . 5  |-  ( n  e.  NN0  ->  ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) )  e.  RR )
204, 19syl 16 . . . 4  |-  ( ( T.  /\  n  e.  ( 0 ... K
) )  ->  (
2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  RR )
212, 20fsumrecl 13558 . . 3  |-  ( T. 
->  sum_ n  e.  ( 0 ... K ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  RR )
2221trud 1408 . 2  |-  sum_ n  e.  ( 0 ... K
) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  e.  RR
23 log2ublem2.4 . . . . . 6  |-  N  e. 
NN0
247, 23nn0mulcli 10751 . . . . 5  |-  ( 2  x.  N )  e. 
NN0
25 nn0p1nn 10752 . . . . 5  |-  ( ( 2  x.  N )  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  e.  NN )
2624, 25ax-mp 5 . . . 4  |-  ( ( 2  x.  N )  +  1 )  e.  NN
276, 26nnmulcli 10476 . . 3  |-  ( 3  x.  ( ( 2  x.  N )  +  1 ) )  e.  NN
28 nnexpcl 12082 . . . 4  |-  ( ( 9  e.  NN  /\  N  e.  NN0 )  -> 
( 9 ^ N
)  e.  NN )
2914, 23, 28mp2an 670 . . 3  |-  ( 9 ^ N )  e.  NN
3027, 29nnmulcli 10476 . 2  |-  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N ) )  e.  NN
31 log2ublem2.2 . . 3  |-  B  e. 
NN0
327, 31nn0mulcli 10751 . 2  |-  ( 2  x.  B )  e. 
NN0
33 log2ublem2.3 . . 3  |-  F  e. 
NN0
347, 33nn0mulcli 10751 . 2  |-  ( 2  x.  F )  e. 
NN0
35 nn0uz 11035 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
3623, 35eleqtri 2468 . . . . . 6  |-  N  e.  ( ZZ>= `  0 )
3736a1i 11 . . . . 5  |-  ( T. 
->  N  e.  ( ZZ>=
`  0 ) )
38 elfznn0 11693 . . . . . . 7  |-  ( n  e.  ( 0 ... N )  ->  n  e.  NN0 )
3938adantl 464 . . . . . 6  |-  ( ( T.  /\  n  e.  ( 0 ... N
) )  ->  n  e.  NN0 )
4019recnd 9533 . . . . . 6  |-  ( n  e.  NN0  ->  ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) )  e.  CC )
4139, 40syl 16 . . . . 5  |-  ( ( T.  /\  n  e.  ( 0 ... N
) )  ->  (
2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  CC )
42 oveq2 6204 . . . . . . . . 9  |-  ( n  =  N  ->  (
2  x.  n )  =  ( 2  x.  N ) )
4342oveq1d 6211 . . . . . . . 8  |-  ( n  =  N  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  N )  +  1 ) )
4443oveq2d 6212 . . . . . . 7  |-  ( n  =  N  ->  (
3  x.  ( ( 2  x.  n )  +  1 ) )  =  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )
45 oveq2 6204 . . . . . . 7  |-  ( n  =  N  ->  (
9 ^ n )  =  ( 9 ^ N ) )
4644, 45oveq12d 6214 . . . . . 6  |-  ( n  =  N  ->  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) )  =  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) ) )
4746oveq2d 6212 . . . . 5  |-  ( n  =  N  ->  (
2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  =  ( 2  / 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) ) )
4837, 41, 47fsumm1 13568 . . . 4  |-  ( T. 
->  sum_ n  e.  ( 0 ... N ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  =  ( sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) )  +  ( 2  /  (
( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ N ) ) ) ) )
4948trud 1408 . . 3  |-  sum_ n  e.  ( 0 ... N
) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  =  (
sum_ n  e.  (
0 ... ( N  - 
1 ) ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  +  ( 2  / 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) ) )
50 log2ublem2.5 . . . . . 6  |-  ( N  -  1 )  =  K
5150oveq2i 6207 . . . . 5  |-  ( 0 ... ( N  - 
1 ) )  =  ( 0 ... K
)
5251sumeq1i 13522 . . . 4  |-  sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  =  sum_ n  e.  ( 0 ... K ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) )
5352oveq1i 6206 . . 3  |-  ( sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) )  +  ( 2  /  (
( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ N ) ) ) )  =  (
sum_ n  e.  (
0 ... K ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  +  ( 2  / 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) ) )
5449, 53eqtri 2411 . 2  |-  sum_ n  e.  ( 0 ... N
) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  =  (
sum_ n  e.  (
0 ... K ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  +  ( 2  / 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) ) )
55 2cn 10523 . . . 4  |-  2  e.  CC
5631nn0cni 10724 . . . 4  |-  B  e.  CC
5733nn0cni 10724 . . . 4  |-  F  e.  CC
5855, 56, 57adddii 9517 . . 3  |-  ( 2  x.  ( B  +  F ) )  =  ( ( 2  x.  B )  +  ( 2  x.  F ) )
59 log2ublem2.6 . . . 4  |-  ( B  +  F )  =  G
6059oveq2i 6207 . . 3  |-  ( 2  x.  ( B  +  F ) )  =  ( 2  x.  G
)
6158, 60eqtr3i 2413 . 2  |-  ( ( 2  x.  B )  +  ( 2  x.  F ) )  =  ( 2  x.  G
)
62 7nn 10615 . . . . . . . . 9  |-  7  e.  NN
6362nnnn0i 10720 . . . . . . . 8  |-  7  e.  NN0
64 nnexpcl 12082 . . . . . . . 8  |-  ( ( 3  e.  NN  /\  7  e.  NN0 )  -> 
( 3 ^ 7 )  e.  NN )
656, 63, 64mp2an 670 . . . . . . 7  |-  ( 3 ^ 7 )  e.  NN
66 5nn 10613 . . . . . . . 8  |-  5  e.  NN
6766, 62nnmulcli 10476 . . . . . . 7  |-  ( 5  x.  7 )  e.  NN
6865, 67nnmulcli 10476 . . . . . 6  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  NN
6968nnrei 10461 . . . . 5  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  RR
7069, 5remulcli 9521 . . . 4  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  2 )  e.  RR
7170leidi 10004 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  2 )  <_ 
( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  2 )
726nnnn0i 10720 . . . . . . . . . . . 12  |-  3  e.  NN0
73 nnexpcl 12082 . . . . . . . . . . . 12  |-  ( ( 9  e.  NN  /\  3  e.  NN0 )  -> 
( 9 ^ 3 )  e.  NN )
7414, 72, 73mp2an 670 . . . . . . . . . . 11  |-  ( 9 ^ 3 )  e.  NN
7574nncni 10462 . . . . . . . . . 10  |-  ( 9 ^ 3 )  e.  CC
7667nncni 10462 . . . . . . . . . 10  |-  ( 5  x.  7 )  e.  CC
7775, 76mulcomi 9513 . . . . . . . . 9  |-  ( ( 9 ^ 3 )  x.  ( 5  x.  7 ) )  =  ( ( 5  x.  7 )  x.  (
9 ^ 3 ) )
78 log2ublem2.8 . . . . . . . . . . . . 13  |-  ( M  +  N )  =  3
79 log2ublem2.7 . . . . . . . . . . . . . . 15  |-  M  e. 
NN0
8079nn0cni 10724 . . . . . . . . . . . . . 14  |-  M  e.  CC
8123nn0cni 10724 . . . . . . . . . . . . . 14  |-  N  e.  CC
8280, 81addcomi 9682 . . . . . . . . . . . . 13  |-  ( M  +  N )  =  ( N  +  M
)
8378, 82eqtr3i 2413 . . . . . . . . . . . 12  |-  3  =  ( N  +  M )
8483oveq2i 6207 . . . . . . . . . . 11  |-  ( 9 ^ 3 )  =  ( 9 ^ ( N  +  M )
)
8514nncni 10462 . . . . . . . . . . . 12  |-  9  e.  CC
86 expadd 12111 . . . . . . . . . . . 12  |-  ( ( 9  e.  CC  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
9 ^ ( N  +  M ) )  =  ( ( 9 ^ N )  x.  ( 9 ^ M
) ) )
8785, 23, 79, 86mp3an 1322 . . . . . . . . . . 11  |-  ( 9 ^ ( N  +  M ) )  =  ( ( 9 ^ N )  x.  (
9 ^ M ) )
8884, 87eqtri 2411 . . . . . . . . . 10  |-  ( 9 ^ 3 )  =  ( ( 9 ^ N )  x.  (
9 ^ M ) )
8988oveq2i 6207 . . . . . . . . 9  |-  ( ( 5  x.  7 )  x.  ( 9 ^ 3 ) )  =  ( ( 5  x.  7 )  x.  (
( 9 ^ N
)  x.  ( 9 ^ M ) ) )
9029nncni 10462 . . . . . . . . . 10  |-  ( 9 ^ N )  e.  CC
91 nnexpcl 12082 . . . . . . . . . . . 12  |-  ( ( 9  e.  NN  /\  M  e.  NN0 )  -> 
( 9 ^ M
)  e.  NN )
9214, 79, 91mp2an 670 . . . . . . . . . . 11  |-  ( 9 ^ M )  e.  NN
9392nncni 10462 . . . . . . . . . 10  |-  ( 9 ^ M )  e.  CC
9476, 90, 93mul12i 9686 . . . . . . . . 9  |-  ( ( 5  x.  7 )  x.  ( ( 9 ^ N )  x.  ( 9 ^ M
) ) )  =  ( ( 9 ^ N )  x.  (
( 5  x.  7 )  x.  ( 9 ^ M ) ) )
9577, 89, 943eqtri 2415 . . . . . . . 8  |-  ( ( 9 ^ 3 )  x.  ( 5  x.  7 ) )  =  ( ( 9 ^ N )  x.  (
( 5  x.  7 )  x.  ( 9 ^ M ) ) )
96 log2ublem2.9 . . . . . . . . 9  |-  ( ( 5  x.  7 )  x.  ( 9 ^ M ) )  =  ( ( ( 2  x.  N )  +  1 )  x.  F
)
9796oveq2i 6207 . . . . . . . 8  |-  ( ( 9 ^ N )  x.  ( ( 5  x.  7 )  x.  ( 9 ^ M
) ) )  =  ( ( 9 ^ N )  x.  (
( ( 2  x.  N )  +  1 )  x.  F ) )
9895, 97eqtri 2411 . . . . . . 7  |-  ( ( 9 ^ 3 )  x.  ( 5  x.  7 ) )  =  ( ( 9 ^ N )  x.  (
( ( 2  x.  N )  +  1 )  x.  F ) )
9998oveq2i 6207 . . . . . 6  |-  ( 3  x.  ( ( 9 ^ 3 )  x.  ( 5  x.  7 ) ) )  =  ( 3  x.  (
( 9 ^ N
)  x.  ( ( ( 2  x.  N
)  +  1 )  x.  F ) ) )
100 df-7 10516 . . . . . . . . . 10  |-  7  =  ( 6  +  1 )
101100oveq2i 6207 . . . . . . . . 9  |-  ( 3 ^ 7 )  =  ( 3 ^ (
6  +  1 ) )
102 3cn 10527 . . . . . . . . . . 11  |-  3  e.  CC
103 6nn0 10733 . . . . . . . . . . 11  |-  6  e.  NN0
104 expp1 12076 . . . . . . . . . . 11  |-  ( ( 3  e.  CC  /\  6  e.  NN0 )  -> 
( 3 ^ (
6  +  1 ) )  =  ( ( 3 ^ 6 )  x.  3 ) )
105102, 103, 104mp2an 670 . . . . . . . . . 10  |-  ( 3 ^ ( 6  +  1 ) )  =  ( ( 3 ^ 6 )  x.  3 )
106 expmul 12114 . . . . . . . . . . . . 13  |-  ( ( 3  e.  CC  /\  2  e.  NN0  /\  3  e.  NN0 )  ->  (
3 ^ ( 2  x.  3 ) )  =  ( ( 3 ^ 2 ) ^
3 ) )
107102, 7, 72, 106mp3an 1322 . . . . . . . . . . . 12  |-  ( 3 ^ ( 2  x.  3 ) )  =  ( ( 3 ^ 2 ) ^ 3 )
10855, 102mulcomi 9513 . . . . . . . . . . . . . 14  |-  ( 2  x.  3 )  =  ( 3  x.  2 )
109 3t2e6 10604 . . . . . . . . . . . . . 14  |-  ( 3  x.  2 )  =  6
110108, 109eqtri 2411 . . . . . . . . . . . . 13  |-  ( 2  x.  3 )  =  6
111110oveq2i 6207 . . . . . . . . . . . 12  |-  ( 3 ^ ( 2  x.  3 ) )  =  ( 3 ^ 6 )
112 sq3 12168 . . . . . . . . . . . . 13  |-  ( 3 ^ 2 )  =  9
113112oveq1i 6206 . . . . . . . . . . . 12  |-  ( ( 3 ^ 2 ) ^ 3 )  =  ( 9 ^ 3 )
114107, 111, 1133eqtr3i 2419 . . . . . . . . . . 11  |-  ( 3 ^ 6 )  =  ( 9 ^ 3 )
115114oveq1i 6206 . . . . . . . . . 10  |-  ( ( 3 ^ 6 )  x.  3 )  =  ( ( 9 ^ 3 )  x.  3 )
116105, 115eqtri 2411 . . . . . . . . 9  |-  ( 3 ^ ( 6  +  1 ) )  =  ( ( 9 ^ 3 )  x.  3 )
11775, 102mulcomi 9513 . . . . . . . . 9  |-  ( ( 9 ^ 3 )  x.  3 )  =  ( 3  x.  (
9 ^ 3 ) )
118101, 116, 1173eqtri 2415 . . . . . . . 8  |-  ( 3 ^ 7 )  =  ( 3  x.  (
9 ^ 3 ) )
119118oveq1i 6206 . . . . . . 7  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  =  ( ( 3  x.  ( 9 ^ 3 ) )  x.  (
5  x.  7 ) )
120102, 75, 76mulassi 9516 . . . . . . 7  |-  ( ( 3  x.  ( 9 ^ 3 ) )  x.  ( 5  x.  7 ) )  =  ( 3  x.  (
( 9 ^ 3 )  x.  ( 5  x.  7 ) ) )
121119, 120eqtri 2411 . . . . . 6  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  =  ( 3  x.  (
( 9 ^ 3 )  x.  ( 5  x.  7 ) ) )
12226nncni 10462 . . . . . . . . 9  |-  ( ( 2  x.  N )  +  1 )  e.  CC
123102, 122, 90mul32i 9687 . . . . . . . 8  |-  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N ) )  =  ( ( 3  x.  ( 9 ^ N
) )  x.  (
( 2  x.  N
)  +  1 ) )
124123oveq1i 6206 . . . . . . 7  |-  ( ( ( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ N ) )  x.  F )  =  ( ( ( 3  x.  ( 9 ^ N ) )  x.  ( ( 2  x.  N )  +  1 ) )  x.  F
)
125102, 90mulcli 9512 . . . . . . . 8  |-  ( 3  x.  ( 9 ^ N ) )  e.  CC
126125, 122, 57mulassi 9516 . . . . . . 7  |-  ( ( ( 3  x.  (
9 ^ N ) )  x.  ( ( 2  x.  N )  +  1 ) )  x.  F )  =  ( ( 3  x.  ( 9 ^ N
) )  x.  (
( ( 2  x.  N )  +  1 )  x.  F ) )
127122, 57mulcli 9512 . . . . . . . 8  |-  ( ( ( 2  x.  N
)  +  1 )  x.  F )  e.  CC
128102, 90, 127mulassi 9516 . . . . . . 7  |-  ( ( 3  x.  ( 9 ^ N ) )  x.  ( ( ( 2  x.  N )  +  1 )  x.  F ) )  =  ( 3  x.  (
( 9 ^ N
)  x.  ( ( ( 2  x.  N
)  +  1 )  x.  F ) ) )
129124, 126, 1283eqtri 2415 . . . . . 6  |-  ( ( ( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ N ) )  x.  F )  =  ( 3  x.  (
( 9 ^ N
)  x.  ( ( ( 2  x.  N
)  +  1 )  x.  F ) ) )
13099, 121, 1293eqtr4i 2421 . . . . 5  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  =  ( ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) )  x.  F
)
131130oveq2i 6207 . . . 4  |-  ( 2  x.  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) ) )  =  ( 2  x.  (
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) )  x.  F ) )
13265nncni 10462 . . . . . 6  |-  ( 3 ^ 7 )  e.  CC
133132, 76mulcli 9512 . . . . 5  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  CC
134133, 55mulcomi 9513 . . . 4  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  2 )  =  ( 2  x.  (
( 3 ^ 7 )  x.  ( 5  x.  7 ) ) )
13530nncni 10462 . . . . 5  |-  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N ) )  e.  CC
136135, 55, 57mul12i 9686 . . . 4  |-  ( ( ( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ N ) )  x.  ( 2  x.  F ) )  =  ( 2  x.  (
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) )  x.  F ) )
137131, 134, 1363eqtr4i 2421 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  2 )  =  ( ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) )  x.  (
2  x.  F ) )
13871, 137breqtri 4390 . 2  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  2 )  <_ 
( ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) )  x.  (
2  x.  F ) )
1391, 22, 7, 30, 32, 34, 54, 61, 138log2ublem1 23393 1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  sum_ n  e.  ( 0 ... N ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  <_  (
2  x.  G )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 367    = wceq 1399   T. wtru 1400    e. wcel 1826   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   CCcc 9401   RRcr 9402   0cc0 9403   1c1 9404    + caddc 9406    x. cmul 9408    <_ cle 9540    - cmin 9718    / cdiv 10123   NNcn 10452   2c2 10502   3c3 10503   5c5 10505   6c6 10506   7c7 10507   9c9 10509   NN0cn0 10712   ZZ>=cuz 11001   ...cfz 11593   ^cexp 12069   sum_csu 13510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-1o 7048  df-oadd 7052  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-sup 7816  df-oi 7850  df-card 8233  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-n0 10713  df-z 10782  df-uz 11002  df-rp 11140  df-fz 11594  df-fzo 11718  df-seq 12011  df-exp 12070  df-hash 12308  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-clim 13313  df-sum 13511
This theorem is referenced by:  log2ublem3  23395
  Copyright terms: Public domain W3C validator