MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ublem1 Structured version   Unicode version

Theorem log2ublem1 23000
Description: Lemma for log2ub 23003. The proof of log2ub 23003, which is simply the evaluation of log2tlbnd 22999 for  N  =  4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator  d (usually a large power of  10) and work with the closest approximations of the form  n  /  d for some integer  n instead. It turns out that for our purposes it is sufficient to take  d  =  ( 3 ^ 7 )  x.  5  x.  7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
log2ublem1.1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  <_  B
log2ublem1.2  |-  A  e.  RR
log2ublem1.3  |-  D  e. 
NN0
log2ublem1.4  |-  E  e.  NN
log2ublem1.5  |-  B  e. 
NN0
log2ublem1.6  |-  F  e. 
NN0
log2ublem1.7  |-  C  =  ( A  +  ( D  /  E ) )
log2ublem1.8  |-  ( B  +  F )  =  G
log2ublem1.9  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  <_ 
( E  x.  F
)
Assertion
Ref Expression
log2ublem1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  C )  <_  G

Proof of Theorem log2ublem1
StepHypRef Expression
1 log2ublem1.1 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  <_  B
2 3nn 10685 . . . . . . . 8  |-  3  e.  NN
3 7nn0 10808 . . . . . . . 8  |-  7  e.  NN0
4 nnexpcl 12137 . . . . . . . 8  |-  ( ( 3  e.  NN  /\  7  e.  NN0 )  -> 
( 3 ^ 7 )  e.  NN )
52, 3, 4mp2an 672 . . . . . . 7  |-  ( 3 ^ 7 )  e.  NN
6 5nn 10687 . . . . . . . 8  |-  5  e.  NN
7 7nn 10689 . . . . . . . 8  |-  7  e.  NN
86, 7nnmulcli 10551 . . . . . . 7  |-  ( 5  x.  7 )  e.  NN
95, 8nnmulcli 10551 . . . . . 6  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  NN
109nncni 10537 . . . . 5  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  CC
11 log2ublem1.3 . . . . . 6  |-  D  e. 
NN0
1211nn0cni 10798 . . . . 5  |-  D  e.  CC
13 log2ublem1.4 . . . . . 6  |-  E  e.  NN
1413nncni 10537 . . . . 5  |-  E  e.  CC
1513nnne0i 10561 . . . . 5  |-  E  =/=  0
1610, 12, 14, 15divassi 10291 . . . 4  |-  ( ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  D )  /  E )  =  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E ) )
17 log2ublem1.9 . . . . 5  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  <_ 
( E  x.  F
)
18 3nn0 10804 . . . . . . . . . 10  |-  3  e.  NN0
1918, 3nn0expcli 12150 . . . . . . . . 9  |-  ( 3 ^ 7 )  e. 
NN0
20 5nn0 10806 . . . . . . . . . 10  |-  5  e.  NN0
2120, 3nn0mulcli 10825 . . . . . . . . 9  |-  ( 5  x.  7 )  e. 
NN0
2219, 21nn0mulcli 10825 . . . . . . . 8  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e. 
NN0
2322, 11nn0mulcli 10825 . . . . . . 7  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  e. 
NN0
2423nn0rei 10797 . . . . . 6  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  e.  RR
25 log2ublem1.6 . . . . . . 7  |-  F  e. 
NN0
2625nn0rei 10797 . . . . . 6  |-  F  e.  RR
2713nnrei 10536 . . . . . . 7  |-  E  e.  RR
2813nngt0i 10560 . . . . . . 7  |-  0  <  E
2927, 28pm3.2i 455 . . . . . 6  |-  ( E  e.  RR  /\  0  <  E )
30 ledivmul 10409 . . . . . 6  |-  ( ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D
)  e.  RR  /\  F  e.  RR  /\  ( E  e.  RR  /\  0  <  E ) )  -> 
( ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  /  E )  <_  F  <->  ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  D )  <_  ( E  x.  F ) ) )
3124, 26, 29, 30mp3an 1319 . . . . 5  |-  ( ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D
)  /  E )  <_  F  <->  ( (
( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  D )  <_ 
( E  x.  F
) )
3217, 31mpbir 209 . . . 4  |-  ( ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  D )  /  E )  <_  F
3316, 32eqbrtrri 4463 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E ) )  <_  F
349nnrei 10536 . . . . 5  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  RR
35 log2ublem1.2 . . . . 5  |-  A  e.  RR
3634, 35remulcli 9601 . . . 4  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  e.  RR
3711nn0rei 10797 . . . . . 6  |-  D  e.  RR
38 nndivre 10562 . . . . . 6  |-  ( ( D  e.  RR  /\  E  e.  NN )  ->  ( D  /  E
)  e.  RR )
3937, 13, 38mp2an 672 . . . . 5  |-  ( D  /  E )  e.  RR
4034, 39remulcli 9601 . . . 4  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E ) )  e.  RR
41 log2ublem1.5 . . . . 5  |-  B  e. 
NN0
4241nn0rei 10797 . . . 4  |-  B  e.  RR
4336, 40, 42, 26le2addi 10107 . . 3  |-  ( ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A
)  <_  B  /\  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E ) )  <_  F )  -> 
( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  +  ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  ( D  /  E ) ) )  <_  ( B  +  F ) )
441, 33, 43mp2an 672 . 2  |-  ( ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  A )  +  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E
) ) )  <_ 
( B  +  F
)
45 log2ublem1.7 . . . 4  |-  C  =  ( A  +  ( D  /  E ) )
4645oveq2i 6288 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  C )  =  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( A  +  ( D  /  E ) ) )
4735recni 9599 . . . 4  |-  A  e.  CC
4839recni 9599 . . . 4  |-  ( D  /  E )  e.  CC
4910, 47, 48adddii 9597 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( A  +  ( D  /  E
) ) )  =  ( ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  A )  +  ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  ( D  /  E ) ) )
5046, 49eqtr2i 2492 . 2  |-  ( ( ( ( 3 ^ 7 )  x.  (
5  x.  7 ) )  x.  A )  +  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  ( D  /  E
) ) )  =  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  C
)
51 log2ublem1.8 . 2  |-  ( B  +  F )  =  G
5244, 50, 513brtr3i 4469 1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  C )  <_  G
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   class class class wbr 4442  (class class class)co 6277   RRcr 9482   0cc0 9483    + caddc 9486    x. cmul 9488    < clt 9619    <_ cle 9620    / cdiv 10197   NNcn 10527   3c3 10577   5c5 10579   7c7 10581   NN0cn0 10786   ^cexp 12124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-2nd 6777  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-nn 10528  df-2 10585  df-3 10586  df-4 10587  df-5 10588  df-6 10589  df-7 10590  df-n0 10787  df-z 10856  df-uz 11074  df-seq 12066  df-exp 12125
This theorem is referenced by:  log2ublem2  23001  log2ub  23003
  Copyright terms: Public domain W3C validator