MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2cnv Structured version   Unicode version

Theorem log2cnv 23854
Description: Using the Taylor series for arctan ( _i  / 
3 ), produce a rapidly convergent series for  log 2. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
log2cnv.1  |-  F  =  ( n  e.  NN0  |->  ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )
Assertion
Ref Expression
log2cnv  |-  seq 0
(  +  ,  F
)  ~~>  ( log `  2
)

Proof of Theorem log2cnv
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11193 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 10949 . . . 4  |-  ( T. 
->  0  e.  ZZ )
3 2cn 10680 . . . . . 6  |-  2  e.  CC
4 ax-icn 9598 . . . . . 6  |-  _i  e.  CC
5 ine0 10054 . . . . . 6  |-  _i  =/=  0
63, 4, 5divcli 10349 . . . . 5  |-  ( 2  /  _i )  e.  CC
76a1i 11 . . . 4  |-  ( T. 
->  ( 2  /  _i )  e.  CC )
8 3cn 10684 . . . . . . 7  |-  3  e.  CC
9 3ne0 10704 . . . . . . 7  |-  3  =/=  0
104, 8, 9divcli 10349 . . . . . 6  |-  ( _i 
/  3 )  e.  CC
11 absdiv 13344 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  ( abs `  ( _i  / 
3 ) )  =  ( ( abs `  _i )  /  ( abs `  3
) ) )
124, 8, 9, 11mp3an 1360 . . . . . . . 8  |-  ( abs `  ( _i  /  3
) )  =  ( ( abs `  _i )  /  ( abs `  3
) )
13 absi 13335 . . . . . . . . 9  |-  ( abs `  _i )  =  1
14 3re 10683 . . . . . . . . . 10  |-  3  e.  RR
15 0re 9643 . . . . . . . . . . 11  |-  0  e.  RR
16 3pos 10703 . . . . . . . . . . 11  |-  0  <  3
1715, 14, 16ltleii 9757 . . . . . . . . . 10  |-  0  <_  3
18 absid 13345 . . . . . . . . . 10  |-  ( ( 3  e.  RR  /\  0  <_  3 )  -> 
( abs `  3
)  =  3 )
1914, 17, 18mp2an 676 . . . . . . . . 9  |-  ( abs `  3 )  =  3
2013, 19oveq12i 6313 . . . . . . . 8  |-  ( ( abs `  _i )  /  ( abs `  3
) )  =  ( 1  /  3 )
2112, 20eqtri 2451 . . . . . . 7  |-  ( abs `  ( _i  /  3
) )  =  ( 1  /  3 )
22 1lt3 10778 . . . . . . . 8  |-  1  <  3
23 recgt1 10502 . . . . . . . . 9  |-  ( ( 3  e.  RR  /\  0  <  3 )  -> 
( 1  <  3  <->  ( 1  /  3 )  <  1 ) )
2414, 16, 23mp2an 676 . . . . . . . 8  |-  ( 1  <  3  <->  ( 1  /  3 )  <  1 )
2522, 24mpbi 211 . . . . . . 7  |-  ( 1  /  3 )  <  1
2621, 25eqbrtri 4440 . . . . . 6  |-  ( abs `  ( _i  /  3
) )  <  1
27 eqid 2422 . . . . . . 7  |-  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) )  =  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) )
2827atantayl3 23849 . . . . . 6  |-  ( ( ( _i  /  3
)  e.  CC  /\  ( abs `  ( _i 
/  3 ) )  <  1 )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( -u 1 ^ n )  x.  ( ( ( _i 
/  3 ) ^
( ( 2  x.  n )  +  1 ) )  /  (
( 2  x.  n
)  +  1 ) ) ) ) )  ~~>  (arctan `  ( _i  /  3 ) ) )
2910, 26, 28mp2an 676 . . . . 5  |-  seq 0
(  +  ,  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) )  ~~>  (arctan `  ( _i  /  3
) )
3029a1i 11 . . . 4  |-  ( T. 
->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  n )  +  1 ) )  / 
( ( 2  x.  n )  +  1 ) ) ) ) )  ~~>  (arctan `  ( _i  /  3 ) ) )
31 oveq2 6309 . . . . . . . . 9  |-  ( n  =  k  ->  ( -u 1 ^ n )  =  ( -u 1 ^ k ) )
32 oveq2 6309 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
2  x.  n )  =  ( 2  x.  k ) )
3332oveq1d 6316 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
3433oveq2d 6317 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  =  ( ( _i 
/  3 ) ^
( ( 2  x.  k )  +  1 ) ) )
3534, 33oveq12d 6319 . . . . . . . . 9  |-  ( n  =  k  ->  (
( ( _i  / 
3 ) ^ (
( 2  x.  n
)  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) )  =  ( ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) )
3631, 35oveq12d 6319 . . . . . . . 8  |-  ( n  =  k  ->  (
( -u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) )  =  ( ( -u
1 ^ k )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) ) )
37 ovex 6329 . . . . . . . 8  |-  ( (
-u 1 ^ k
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  e.  _V
3836, 27, 37fvmpt 5960 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k )  =  ( ( -u
1 ^ k )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) ) )
394a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  _i  e.  CC )
408a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  3  e.  CC )
419a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  3  =/=  0 )
42 2nn0 10886 . . . . . . . . . . . . . 14  |-  2  e.  NN0
43 nn0mulcl 10906 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN0  /\  k  e.  NN0 )  -> 
( 2  x.  k
)  e.  NN0 )
4442, 43mpan 674 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 2  x.  k )  e. 
NN0 )
45 peano2nn0 10910 . . . . . . . . . . . . 13  |-  ( ( 2  x.  k )  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e. 
NN0 )
4644, 45syl 17 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e. 
NN0 )
4739, 40, 41, 46expdivd 12429 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( _i ^
( ( 2  x.  k )  +  1 ) )  /  (
3 ^ ( ( 2  x.  k )  +  1 ) ) ) )
4847oveq2d 6317 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( -u
1 ^ k )  x.  ( ( _i
^ ( ( 2  x.  k )  +  1 ) )  / 
( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) ) )
49 neg1cn 10713 . . . . . . . . . . . 12  |-  -u 1  e.  CC
50 expcl 12289 . . . . . . . . . . . 12  |-  ( (
-u 1  e.  CC  /\  k  e.  NN0 )  ->  ( -u 1 ^ k )  e.  CC )
5149, 50mpan 674 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( -u
1 ^ k )  e.  CC )
52 expcl 12289 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( ( 2  x.  k )  +  1 )  e.  NN0 )  ->  ( _i ^ (
( 2  x.  k
)  +  1 ) )  e.  CC )
534, 46, 52sylancr 667 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( _i
^ ( ( 2  x.  k )  +  1 ) )  e.  CC )
54 3nn 10768 . . . . . . . . . . . . 13  |-  3  e.  NN
55 nnexpcl 12284 . . . . . . . . . . . . 13  |-  ( ( 3  e.  NN  /\  ( ( 2  x.  k )  +  1 )  e.  NN0 )  ->  ( 3 ^ (
( 2  x.  k
)  +  1 ) )  e.  NN )
5654, 46, 55sylancr 667 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  e.  NN )
5756nncnd 10625 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  e.  CC )
5856nnne0d 10654 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  =/=  0 )
5951, 53, 57, 58divassd 10418 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
_i ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( -u
1 ^ k )  x.  ( ( _i
^ ( ( 2  x.  k )  +  1 ) )  / 
( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) ) )
60 expp1 12278 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  ( 2  x.  k
)  e.  NN0 )  ->  ( _i ^ (
( 2  x.  k
)  +  1 ) )  =  ( ( _i ^ ( 2  x.  k ) )  x.  _i ) )
614, 44, 60sylancr 667 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( _i
^ ( ( 2  x.  k )  +  1 ) )  =  ( ( _i ^
( 2  x.  k
) )  x.  _i ) )
62 expmul 12316 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  e.  CC  /\  2  e.  NN0  /\  k  e.  NN0 )  ->  (
_i ^ ( 2  x.  k ) )  =  ( ( _i
^ 2 ) ^
k ) )
634, 42, 62mp3an12 1350 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( _i
^ ( 2  x.  k ) )  =  ( ( _i ^
2 ) ^ k
) )
64 i2 12374 . . . . . . . . . . . . . . . . 17  |-  ( _i
^ 2 )  = 
-u 1
6564oveq1i 6311 . . . . . . . . . . . . . . . 16  |-  ( ( _i ^ 2 ) ^ k )  =  ( -u 1 ^ k )
6663, 65syl6eq 2479 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( _i
^ ( 2  x.  k ) )  =  ( -u 1 ^ k ) )
6766oveq1d 6316 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ( _i ^ ( 2  x.  k ) )  x.  _i )  =  ( ( -u 1 ^ k )  x.  _i ) )
6861, 67eqtrd 2463 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( _i
^ ( ( 2  x.  k )  +  1 ) )  =  ( ( -u 1 ^ k )  x.  _i ) )
6968oveq2d 6317 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( _i
^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( -u
1 ^ k )  x.  ( ( -u
1 ^ k )  x.  _i ) ) )
7051, 51, 39mulassd 9666 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  ( -u 1 ^ k ) )  x.  _i )  =  ( ( -u
1 ^ k )  x.  ( ( -u
1 ^ k )  x.  _i ) ) )
7149a1i 11 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  -u 1  e.  CC )
72 id 23 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
7371, 72, 72expaddd 12417 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( k  +  k ) )  =  ( ( -u
1 ^ k )  x.  ( -u 1 ^ k ) ) )
74 expmul 12316 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u 1  e.  CC  /\  2  e.  NN0  /\  k  e.  NN0 )  -> 
( -u 1 ^ (
2  x.  k ) )  =  ( (
-u 1 ^ 2 ) ^ k ) )
7549, 42, 74mp3an12 1350 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( 2  x.  k ) )  =  ( ( -u
1 ^ 2 ) ^ k ) )
76 neg1sqe1 12369 . . . . . . . . . . . . . . . . . 18  |-  ( -u
1 ^ 2 )  =  1
7776oveq1i 6311 . . . . . . . . . . . . . . . . 17  |-  ( (
-u 1 ^ 2 ) ^ k )  =  ( 1 ^ k )
7875, 77syl6eq 2479 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( 2  x.  k ) )  =  ( 1 ^ k ) )
79 nn0cn 10879 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  k  e.  CC )
80792timesd 10855 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( 2  x.  k )  =  ( k  +  k ) )
8180oveq2d 6317 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( 2  x.  k ) )  =  ( -u 1 ^ ( k  +  k ) ) )
82 nn0z 10960 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  ZZ )
83 1exp 12300 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
1 ^ k )  =  1 )
8482, 83syl 17 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( 1 ^ k )  =  1 )
8578, 81, 843eqtr3d 2471 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( -u
1 ^ ( k  +  k ) )  =  1 )
8673, 85eqtr3d 2465 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( -u
1 ^ k ) )  =  1 )
8786oveq1d 6316 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  ( -u 1 ^ k ) )  x.  _i )  =  ( 1  x.  _i ) )
884mulid2i 9646 . . . . . . . . . . . . 13  |-  ( 1  x.  _i )  =  _i
8987, 88syl6eq 2479 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  ( -u 1 ^ k ) )  x.  _i )  =  _i )
9069, 70, 893eqtr2d 2469 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( _i
^ ( ( 2  x.  k )  +  1 ) ) )  =  _i )
9190oveq1d 6316 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
_i ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) )
9248, 59, 913eqtr2d 2469 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) )
9392oveq1d 6316 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( _i 
/  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  / 
( ( 2  x.  k )  +  1 ) ) )
94 expcl 12289 . . . . . . . . . 10  |-  ( ( ( _i  /  3
)  e.  CC  /\  ( ( 2  x.  k )  +  1 )  e.  NN0 )  ->  ( ( _i  / 
3 ) ^ (
( 2  x.  k
)  +  1 ) )  e.  CC )
9510, 46, 94sylancr 667 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  e.  CC )
96 nn0p1nn 10909 . . . . . . . . . . 11  |-  ( ( 2  x.  k )  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  NN )
9744, 96syl 17 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  NN )
9897nncnd 10625 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  CC )
9997nnne0d 10654 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  =/=  0 )
10051, 95, 98, 99divassd 10418 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( -u
1 ^ k )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) )  / 
( ( 2  x.  k )  +  1 ) ) ) )
10139, 57, 98, 58, 99divdiv1d 10414 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( _i  /  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( _i  /  (
( 3 ^ (
( 2  x.  k
)  +  1 ) )  x.  ( ( 2  x.  k )  +  1 ) ) ) )
10293, 100, 1013eqtr3d 2471 . . . . . . 7  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( ( 3 ^ ( ( 2  x.  k )  +  1 ) )  x.  (
( 2  x.  k
)  +  1 ) ) ) )
10357, 98mulcomd 9664 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 3 ^ ( ( 2  x.  k )  +  1 ) )  x.  ( ( 2  x.  k )  +  1 ) )  =  ( ( ( 2  x.  k )  +  1 )  x.  (
3 ^ ( ( 2  x.  k )  +  1 ) ) ) )
104103oveq2d 6317 . . . . . . 7  |-  ( k  e.  NN0  ->  ( _i 
/  ( ( 3 ^ ( ( 2  x.  k )  +  1 ) )  x.  ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  /  (
( ( 2  x.  k )  +  1 )  x.  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
10538, 102, 1043eqtrd 2467 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k )  =  ( _i  / 
( ( ( 2  x.  k )  +  1 )  x.  (
3 ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
10697, 56nnmulcld 10657 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  x.  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  e.  NN )
107106nncnd 10625 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  x.  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  e.  CC )
108106nnne0d 10654 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  x.  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  =/=  0 )
10939, 107, 108divcld 10383 . . . . . 6  |-  ( k  e.  NN0  ->  ( _i 
/  ( ( ( 2  x.  k )  +  1 )  x.  ( 3 ^ (
( 2  x.  k
)  +  1 ) ) ) )  e.  CC )
110105, 109eqeltrd 2510 . . . . 5  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k )  e.  CC )
111110adantl 467 . . . 4  |-  ( ( T.  /\  k  e. 
NN0 )  ->  (
( n  e.  NN0  |->  ( ( -u 1 ^ n )  x.  ( ( ( _i 
/  3 ) ^
( ( 2  x.  n )  +  1 ) )  /  (
( 2  x.  n
)  +  1 ) ) ) ) `  k )  e.  CC )
11233oveq2d 6317 . . . . . . . . 9  |-  ( n  =  k  ->  (
3  x.  ( ( 2  x.  n )  +  1 ) )  =  ( 3  x.  ( ( 2  x.  k )  +  1 ) ) )
113 oveq2 6309 . . . . . . . . 9  |-  ( n  =  k  ->  (
9 ^ n )  =  ( 9 ^ k ) )
114112, 113oveq12d 6319 . . . . . . . 8  |-  ( n  =  k  ->  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) )  =  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) )
115114oveq2d 6317 . . . . . . 7  |-  ( n  =  k  ->  (
2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  =  ( 2  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) )
116 log2cnv.1 . . . . . . 7  |-  F  =  ( n  e.  NN0  |->  ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )
117 ovex 6329 . . . . . . 7  |-  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) )  e. 
_V
118115, 116, 117fvmpt 5960 . . . . . 6  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( 2  /  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) ) ) )
119 expp1 12278 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  CC  /\  ( 2  x.  k
)  e.  NN0 )  ->  ( 3 ^ (
( 2  x.  k
)  +  1 ) )  =  ( ( 3 ^ ( 2  x.  k ) )  x.  3 ) )
1208, 44, 119sylancr 667 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( 3 ^ ( 2  x.  k
) )  x.  3 ) )
121 expmul 12316 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  e.  CC  /\  2  e.  NN0  /\  k  e.  NN0 )  ->  (
3 ^ ( 2  x.  k ) )  =  ( ( 3 ^ 2 ) ^
k ) )
1228, 42, 121mp3an12 1350 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( 3 ^ ( 2  x.  k ) )  =  ( ( 3 ^ 2 ) ^ k
) )
123 sq3 12371 . . . . . . . . . . . . . . . . 17  |-  ( 3 ^ 2 )  =  9
124123oveq1i 6311 . . . . . . . . . . . . . . . 16  |-  ( ( 3 ^ 2 ) ^ k )  =  ( 9 ^ k
)
125122, 124syl6eq 2479 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 3 ^ ( 2  x.  k ) )  =  ( 9 ^ k
) )
126125oveq1d 6316 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ( 3 ^ ( 2  x.  k ) )  x.  3 )  =  ( ( 9 ^ k )  x.  3 ) )
127 9nn 10774 . . . . . . . . . . . . . . . . 17  |-  9  e.  NN
128 nnexpcl 12284 . . . . . . . . . . . . . . . . 17  |-  ( ( 9  e.  NN  /\  k  e.  NN0 )  -> 
( 9 ^ k
)  e.  NN )
129127, 128mpan 674 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( 9 ^ k )  e.  NN )
130129nncnd 10625 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 9 ^ k )  e.  CC )
131 mulcom 9625 . . . . . . . . . . . . . . 15  |-  ( ( ( 9 ^ k
)  e.  CC  /\  3  e.  CC )  ->  ( ( 9 ^ k )  x.  3 )  =  ( 3  x.  ( 9 ^ k ) ) )
132130, 8, 131sylancl 666 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ( 9 ^ k )  x.  3 )  =  ( 3  x.  (
9 ^ k ) ) )
133120, 126, 1323eqtrd 2467 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 3 ^ ( ( 2  x.  k )  +  1 ) )  =  ( 3  x.  (
9 ^ k ) ) )
13490, 133oveq12d 6319 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
_i ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( 3 ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( 3  x.  (
9 ^ k ) ) ) )
13548, 59, 1343eqtr2d 2469 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( _i  /  3 ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( 3  x.  (
9 ^ k ) ) ) )
136135oveq1d 6316 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( ( -u 1 ^ k )  x.  (
( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( _i 
/  ( 3  x.  ( 9 ^ k
) ) )  / 
( ( 2  x.  k )  +  1 ) ) )
137 nnmulcl 10632 . . . . . . . . . . . . 13  |-  ( ( 3  e.  NN  /\  ( 9 ^ k
)  e.  NN )  ->  ( 3  x.  ( 9 ^ k
) )  e.  NN )
13854, 129, 137sylancr 667 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 3  x.  ( 9 ^ k ) )  e.  NN )
139138nncnd 10625 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3  x.  ( 9 ^ k ) )  e.  CC )
140138nnne0d 10654 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3  x.  ( 9 ^ k ) )  =/=  0 )
14139, 139, 98, 140, 99divdiv1d 10414 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( _i  /  ( 3  x.  ( 9 ^ k ) ) )  /  ( ( 2  x.  k )  +  1 ) )  =  ( _i  /  (
( 3  x.  (
9 ^ k ) )  x.  ( ( 2  x.  k )  +  1 ) ) ) )
142136, 100, 1413eqtr3d 2471 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  k )  +  1 ) )  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  / 
( ( 3  x.  ( 9 ^ k
) )  x.  (
( 2  x.  k
)  +  1 ) ) ) )
14340, 130, 98mul32d 9843 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 3  x.  ( 9 ^ k ) )  x.  ( ( 2  x.  k )  +  1 ) )  =  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) )
144143oveq2d 6317 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( _i 
/  ( ( 3  x.  ( 9 ^ k ) )  x.  ( ( 2  x.  k )  +  1 ) ) )  =  ( _i  /  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) ) ) )
14538, 142, 1443eqtrd 2467 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k )  =  ( _i  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) )
146145oveq2d 6317 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( 2  /  _i )  x.  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k ) )  =  ( ( 2  /  _i )  x.  ( _i  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) )
147 nnmulcl 10632 . . . . . . . . . . . 12  |-  ( ( 3  e.  NN  /\  ( ( 2  x.  k )  +  1 )  e.  NN )  ->  ( 3  x.  ( ( 2  x.  k )  +  1 ) )  e.  NN )
14854, 97, 147sylancr 667 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 3  x.  ( ( 2  x.  k )  +  1 ) )  e.  NN )
149148, 129nnmulcld 10657 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) )  e.  NN )
150149nncnd 10625 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) )  e.  CC )
151149nnne0d 10654 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) )  =/=  0 )
15239, 150, 151divcld 10383 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( _i 
/  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) )  e.  CC )
153 mulcom 9625 . . . . . . . 8  |-  ( ( ( _i  /  (
( 3  x.  (
( 2  x.  k
)  +  1 ) )  x.  ( 9 ^ k ) ) )  e.  CC  /\  ( 2  /  _i )  e.  CC )  ->  ( ( _i  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) )  x.  (
2  /  _i ) )  =  ( ( 2  /  _i )  x.  ( _i  / 
( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) )
154152, 6, 153sylancl 666 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( _i  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) ) )  x.  ( 2  /  _i ) )  =  ( ( 2  /  _i )  x.  ( _i  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  (
9 ^ k ) ) ) ) )
1553a1i 11 . . . . . . . 8  |-  ( k  e.  NN0  ->  2  e.  CC )
1565a1i 11 . . . . . . . 8  |-  ( k  e.  NN0  ->  _i  =/=  0 )
157155, 39, 150, 156, 151dmdcand 10412 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( _i  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) ) )  x.  ( 2  /  _i ) )  =  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k ) ) ) )
158146, 154, 1573eqtr2d 2469 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( 2  /  _i )  x.  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  x.  ( ( ( _i  /  3
) ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( 2  x.  n )  +  1 ) ) ) ) `  k ) )  =  ( 2  /  ( ( 3  x.  ( ( 2  x.  k )  +  1 ) )  x.  ( 9 ^ k
) ) ) )
159118, 158eqtr4d 2466 . . . . 5  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( 2  /  _i )  x.  (
( n  e.  NN0  |->  ( ( -u 1 ^ n )  x.  ( ( ( _i 
/  3 ) ^
( ( 2  x.  n )  +  1 ) )  /  (
( 2  x.  n
)  +  1 ) ) ) ) `  k ) ) )
160159adantl 467 . . . 4  |-  ( ( T.  /\  k  e. 
NN0 )  ->  ( F `  k )  =  ( ( 2  /  _i )  x.  ( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  x.  ( ( ( _i  /  3 ) ^ ( ( 2  x.  n )  +  1 ) )  / 
( ( 2  x.  n )  +  1 ) ) ) ) `
 k ) ) )
1611, 2, 7, 30, 111, 160isermulc2 13706 . . 3  |-  ( T. 
->  seq 0 (  +  ,  F )  ~~>  ( ( 2  /  _i )  x.  (arctan `  (
_i  /  3 ) ) ) )
162161trud 1446 . 2  |-  seq 0
(  +  ,  F
)  ~~>  ( ( 2  /  _i )  x.  (arctan `  ( _i  /  3 ) ) )
163 bndatandm 23839 . . . . . . . 8  |-  ( ( ( _i  /  3
)  e.  CC  /\  ( abs `  ( _i 
/  3 ) )  <  1 )  -> 
( _i  /  3
)  e.  dom arctan )
16410, 26, 163mp2an 676 . . . . . . 7  |-  ( _i 
/  3 )  e. 
dom arctan
165 atanval 23794 . . . . . . 7  |-  ( ( _i  /  3 )  e.  dom arctan  ->  (arctan `  ( _i  /  3
) )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  ( _i  /  3
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( _i  / 
3 ) ) ) ) ) ) )
166164, 165ax-mp 5 . . . . . 6  |-  (arctan `  ( _i  /  3
) )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  ( _i  /  3
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( _i  / 
3 ) ) ) ) ) )
167 df-4 10670 . . . . . . . . . . . . 13  |-  4  =  ( 3  +  1 )
168167oveq1i 6311 . . . . . . . . . . . 12  |-  ( 4  /  3 )  =  ( ( 3  +  1 )  /  3
)
169 ax-1cn 9597 . . . . . . . . . . . . 13  |-  1  e.  CC
1708, 169, 8, 9divdiri 10364 . . . . . . . . . . . 12  |-  ( ( 3  +  1 )  /  3 )  =  ( ( 3  / 
3 )  +  ( 1  /  3 ) )
1718, 9dividi 10340 . . . . . . . . . . . . 13  |-  ( 3  /  3 )  =  1
172171oveq1i 6311 . . . . . . . . . . . 12  |-  ( ( 3  /  3 )  +  ( 1  / 
3 ) )  =  ( 1  +  ( 1  /  3 ) )
173168, 170, 1723eqtri 2455 . . . . . . . . . . 11  |-  ( 4  /  3 )  =  ( 1  +  ( 1  /  3 ) )
174169, 8, 9divcli 10349 . . . . . . . . . . . 12  |-  ( 1  /  3 )  e.  CC
175169, 174subnegi 9953 . . . . . . . . . . 11  |-  ( 1  -  -u ( 1  / 
3 ) )  =  ( 1  +  ( 1  /  3 ) )
176 divneg 10302 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  -u (
1  /  3 )  =  ( -u 1  /  3 ) )
177169, 8, 9, 176mp3an 1360 . . . . . . . . . . . . 13  |-  -u (
1  /  3 )  =  ( -u 1  /  3 )
178 ixi 10241 . . . . . . . . . . . . . 14  |-  ( _i  x.  _i )  = 
-u 1
179178oveq1i 6311 . . . . . . . . . . . . 13  |-  ( ( _i  x.  _i )  /  3 )  =  ( -u 1  / 
3 )
1804, 4, 8, 9divassi 10363 . . . . . . . . . . . . 13  |-  ( ( _i  x.  _i )  /  3 )  =  ( _i  x.  (
_i  /  3 ) )
181177, 179, 1803eqtr2i 2457 . . . . . . . . . . . 12  |-  -u (
1  /  3 )  =  ( _i  x.  ( _i  /  3
) )
182181oveq2i 6312 . . . . . . . . . . 11  |-  ( 1  -  -u ( 1  / 
3 ) )  =  ( 1  -  (
_i  x.  ( _i  /  3 ) ) )
183173, 175, 1823eqtr2ri 2458 . . . . . . . . . 10  |-  ( 1  -  ( _i  x.  ( _i  /  3
) ) )  =  ( 4  /  3
)
184183fveq2i 5880 . . . . . . . . 9  |-  ( log `  ( 1  -  (
_i  x.  ( _i  /  3 ) ) ) )  =  ( log `  ( 4  /  3
) )
1858, 9pm3.2i 456 . . . . . . . . . . . . 13  |-  ( 3  e.  CC  /\  3  =/=  0 )
186 divsubdir 10303 . . . . . . . . . . . . 13  |-  ( ( 3  e.  CC  /\  1  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( ( 3  -  1 )  / 
3 )  =  ( ( 3  /  3
)  -  ( 1  /  3 ) ) )
1878, 169, 185, 186mp3an 1360 . . . . . . . . . . . 12  |-  ( ( 3  -  1 )  /  3 )  =  ( ( 3  / 
3 )  -  (
1  /  3 ) )
188 3m1e2 10726 . . . . . . . . . . . . 13  |-  ( 3  -  1 )  =  2
189188oveq1i 6311 . . . . . . . . . . . 12  |-  ( ( 3  -  1 )  /  3 )  =  ( 2  /  3
)
190171oveq1i 6311 . . . . . . . . . . . 12  |-  ( ( 3  /  3 )  -  ( 1  / 
3 ) )  =  ( 1  -  (
1  /  3 ) )
191187, 189, 1903eqtr3i 2459 . . . . . . . . . . 11  |-  ( 2  /  3 )  =  ( 1  -  (
1  /  3 ) )
192169, 174negsubi 9952 . . . . . . . . . . 11  |-  ( 1  +  -u ( 1  / 
3 ) )  =  ( 1  -  (
1  /  3 ) )
193181oveq2i 6312 . . . . . . . . . . 11  |-  ( 1  +  -u ( 1  / 
3 ) )  =  ( 1  +  ( _i  x.  ( _i 
/  3 ) ) )
194191, 192, 1933eqtr2ri 2458 . . . . . . . . . 10  |-  ( 1  +  ( _i  x.  ( _i  /  3
) ) )  =  ( 2  /  3
)
195194fveq2i 5880 . . . . . . . . 9  |-  ( log `  ( 1  +  ( _i  x.  ( _i 
/  3 ) ) ) )  =  ( log `  ( 2  /  3 ) )
196184, 195oveq12i 6313 . . . . . . . 8  |-  ( ( log `  ( 1  -  ( _i  x.  ( _i  /  3
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( _i  / 
3 ) ) ) ) )  =  ( ( log `  (
4  /  3 ) )  -  ( log `  ( 2  /  3
) ) )
197 4re 10686 . . . . . . . . . . 11  |-  4  e.  RR
198 4pos 10705 . . . . . . . . . . 11  |-  0  <  4
199197, 198elrpii 11305 . . . . . . . . . 10  |-  4  e.  RR+
20014, 16elrpii 11305 . . . . . . . . . 10  |-  3  e.  RR+
201 rpdivcl 11325 . . . . . . . . . 10  |-  ( ( 4  e.  RR+  /\  3  e.  RR+ )  ->  (
4  /  3 )  e.  RR+ )
202199, 200, 201mp2an 676 . . . . . . . . 9  |-  ( 4  /  3 )  e.  RR+
203 2rp 11307 . . . . . . . . . 10  |-  2  e.  RR+
204 rpdivcl 11325 . . . . . . . . . 10  |-  ( ( 2  e.  RR+  /\  3  e.  RR+ )  ->  (
2  /  3 )  e.  RR+ )
205203, 200, 204mp2an 676 . . . . . . . . 9  |-  ( 2  /  3 )  e.  RR+
206 relogdiv 23526 . . . . . . . . 9  |-  ( ( ( 4  /  3
)  e.  RR+  /\  (
2  /  3 )  e.  RR+ )  ->  ( log `  ( ( 4  /  3 )  / 
( 2  /  3
) ) )  =  ( ( log `  (
4  /  3 ) )  -  ( log `  ( 2  /  3
) ) ) )
207202, 205, 206mp2an 676 . . . . . . . 8  |-  ( log `  ( ( 4  / 
3 )  /  (
2  /  3 ) ) )  =  ( ( log `  (
4  /  3 ) )  -  ( log `  ( 2  /  3
) ) )
208 4cn 10687 . . . . . . . . . . 11  |-  4  e.  CC
209 2cnne0 10824 . . . . . . . . . . 11  |-  ( 2  e.  CC  /\  2  =/=  0 )
210 divcan7 10316 . . . . . . . . . . 11  |-  ( ( 4  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  ( 3  e.  CC  /\  3  =/=  0 ) )  -> 
( ( 4  / 
3 )  /  (
2  /  3 ) )  =  ( 4  /  2 ) )
211208, 209, 185, 210mp3an 1360 . . . . . . . . . 10  |-  ( ( 4  /  3 )  /  ( 2  / 
3 ) )  =  ( 4  /  2
)
212 4d2e2 10766 . . . . . . . . . 10  |-  ( 4  /  2 )  =  2
213211, 212eqtri 2451 . . . . . . . . 9  |-  ( ( 4  /  3 )  /  ( 2  / 
3 ) )  =  2
214213fveq2i 5880 . . . . . . . 8  |-  ( log `  ( ( 4  / 
3 )  /  (
2  /  3 ) ) )  =  ( log `  2 )
215196, 207, 2143eqtr2i 2457 . . . . . . 7  |-  ( ( log `  ( 1  -  ( _i  x.  ( _i  /  3
) ) ) )  -  ( log `  (
1  +  ( _i  x.  ( _i  / 
3 ) ) ) ) )  =  ( log `  2 )
216215oveq2i 6312 . . . . . 6  |-  ( ( _i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  ( _i  /  3 ) ) ) )  -  ( log `  ( 1  +  ( _i  x.  ( _i 
/  3 ) ) ) ) ) )  =  ( ( _i 
/  2 )  x.  ( log `  2
) )
217166, 216eqtri 2451 . . . . 5  |-  (arctan `  ( _i  /  3
) )  =  ( ( _i  /  2
)  x.  ( log `  2 ) )
218217oveq2i 6312 . . . 4  |-  ( ( 2  /  _i )  x.  (arctan `  (
_i  /  3 ) ) )  =  ( ( 2  /  _i )  x.  ( (
_i  /  2 )  x.  ( log `  2
) ) )
219 2ne0 10702 . . . . . 6  |-  2  =/=  0
2204, 3, 219divcli 10349 . . . . 5  |-  ( _i 
/  2 )  e.  CC
221 logcl 23502 . . . . . 6  |-  ( ( 2  e.  CC  /\  2  =/=  0 )  -> 
( log `  2
)  e.  CC )
2223, 219, 221mp2an 676 . . . . 5  |-  ( log `  2 )  e.  CC
2236, 220, 222mulassi 9652 . . . 4  |-  ( ( ( 2  /  _i )  x.  ( _i  /  2 ) )  x.  ( log `  2
) )  =  ( ( 2  /  _i )  x.  ( (
_i  /  2 )  x.  ( log `  2
) ) )
224218, 223eqtr4i 2454 . . 3  |-  ( ( 2  /  _i )  x.  (arctan `  (
_i  /  3 ) ) )  =  ( ( ( 2  /  _i )  x.  (
_i  /  2 ) )  x.  ( log `  2 ) )
225 divcan6 10314 . . . . 5  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( _i  e.  CC  /\  _i  =/=  0
) )  ->  (
( 2  /  _i )  x.  ( _i  /  2 ) )  =  1 )
2263, 219, 4, 5, 225mp4an 677 . . . 4  |-  ( ( 2  /  _i )  x.  ( _i  / 
2 ) )  =  1
227226oveq1i 6311 . . 3  |-  ( ( ( 2  /  _i )  x.  ( _i  /  2 ) )  x.  ( log `  2
) )  =  ( 1  x.  ( log `  2 ) )
228222mulid2i 9646 . . 3  |-  ( 1  x.  ( log `  2
) )  =  ( log `  2 )
229224, 227, 2283eqtri 2455 . 2  |-  ( ( 2  /  _i )  x.  (arctan `  (
_i  /  3 ) ) )  =  ( log `  2 )
230162, 229breqtri 4444 1  |-  seq 0
(  +  ,  F
)  ~~>  ( log `  2
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437   T. wtru 1438    e. wcel 1868    =/= wne 2618   class class class wbr 4420    |-> cmpt 4479   dom cdm 4849   ` cfv 5597  (class class class)co 6301   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540   _ici 9541    + caddc 9542    x. cmul 9544    < clt 9675    <_ cle 9676    - cmin 9860   -ucneg 9861    / cdiv 10269   NNcn 10609   2c2 10659   3c3 10660   4c4 10661   9c9 10666   NN0cn0 10869   ZZcz 10937   RR+crp 11302    seqcseq 12212   ^cexp 12271   abscabs 13283    ~~> cli 13533   logclog 23488  arctancatan 23774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-inf2 8148  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-of 6541  df-om 6703  df-1st 6803  df-2nd 6804  df-supp 6922  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-2o 7187  df-oadd 7190  df-er 7367  df-map 7478  df-pm 7479  df-ixp 7527  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fsupp 7886  df-fi 7927  df-sup 7958  df-inf 7959  df-oi 8027  df-card 8374  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12027  df-mod 12096  df-seq 12213  df-exp 12272  df-fac 12459  df-bc 12487  df-hash 12515  df-shft 13116  df-cj 13148  df-re 13149  df-im 13150  df-sqrt 13284  df-abs 13285  df-limsup 13511  df-clim 13537  df-rlim 13538  df-sum 13738  df-ef 14106  df-sin 14108  df-cos 14109  df-tan 14110  df-pi 14111  df-dvds 14291  df-struct 15108  df-ndx 15109  df-slot 15110  df-base 15111  df-sets 15112  df-ress 15113  df-plusg 15188  df-mulr 15189  df-starv 15190  df-sca 15191  df-vsca 15192  df-ip 15193  df-tset 15194  df-ple 15195  df-ds 15197  df-unif 15198  df-hom 15199  df-cco 15200  df-rest 15306  df-topn 15307  df-0g 15325  df-gsum 15326  df-topgen 15327  df-pt 15328  df-prds 15331  df-xrs 15385  df-qtop 15391  df-imas 15392  df-xps 15395  df-mre 15477  df-mrc 15478  df-acs 15480  df-mgm 16473  df-sgrp 16512  df-mnd 16522  df-submnd 16568  df-mulg 16661  df-cntz 16956  df-cmn 17417  df-psmet 18947  df-xmet 18948  df-met 18949  df-bl 18950  df-mopn 18951  df-fbas 18952  df-fg 18953  df-cnfld 18956  df-top 19905  df-bases 19906  df-topon 19907  df-topsp 19908  df-cld 20018  df-ntr 20019  df-cls 20020  df-nei 20098  df-lp 20136  df-perf 20137  df-cn 20227  df-cnp 20228  df-haus 20315  df-cmp 20386  df-tx 20561  df-hmeo 20754  df-fil 20845  df-fm 20937  df-flim 20938  df-flf 20939  df-xms 21319  df-ms 21320  df-tms 21321  df-cncf 21894  df-limc 22805  df-dv 22806  df-ulm 23316  df-log 23490  df-atan 23777
This theorem is referenced by:  log2tlbnd  23855
  Copyright terms: Public domain W3C validator