Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  locfindis Structured version   Unicode version

Theorem locfindis 29764
Description: The locally finite covers of a discrete space are precisely the point-finite covers. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
locfindis.1  |-  Y  = 
U. C
Assertion
Ref Expression
locfindis  |-  ( C  e.  ( LocFin `  ~P X )  <->  ( C  e.  PtFin  /\  X  =  Y ) )

Proof of Theorem locfindis
Dummy variables  x  s  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfinpfin 29762 . . 3  |-  ( C  e.  ( LocFin `  ~P X )  ->  C  e.  PtFin )
2 unipw 4690 . . . . 5  |-  U. ~P X  =  X
32eqcomi 2473 . . . 4  |-  X  = 
U. ~P X
4 locfindis.1 . . . 4  |-  Y  = 
U. C
53, 4locfinbas 29760 . . 3  |-  ( C  e.  ( LocFin `  ~P X )  ->  X  =  Y )
61, 5jca 532 . 2  |-  ( C  e.  ( LocFin `  ~P X )  ->  ( C  e.  PtFin  /\  X  =  Y ) )
7 simpr 461 . . . . 5  |-  ( ( C  e.  PtFin  /\  X  =  Y )  ->  X  =  Y )
8 uniexg 6572 . . . . . . 7  |-  ( C  e.  PtFin  ->  U. C  e. 
_V )
94, 8syl5eqel 2552 . . . . . 6  |-  ( C  e.  PtFin  ->  Y  e.  _V )
109adantr 465 . . . . 5  |-  ( ( C  e.  PtFin  /\  X  =  Y )  ->  Y  e.  _V )
117, 10eqeltrd 2548 . . . 4  |-  ( ( C  e.  PtFin  /\  X  =  Y )  ->  X  e.  _V )
12 distop 19256 . . . 4  |-  ( X  e.  _V  ->  ~P X  e.  Top )
1311, 12syl 16 . . 3  |-  ( ( C  e.  PtFin  /\  X  =  Y )  ->  ~P X  e.  Top )
14 snelpwi 4685 . . . . . 6  |-  ( x  e.  X  ->  { x }  e.  ~P X
)
1514adantl 466 . . . . 5  |-  ( ( ( C  e.  PtFin  /\  X  =  Y )  /\  x  e.  X
)  ->  { x }  e.  ~P X
)
16 snidg 4046 . . . . . 6  |-  ( x  e.  X  ->  x  e.  { x } )
1716adantl 466 . . . . 5  |-  ( ( ( C  e.  PtFin  /\  X  =  Y )  /\  x  e.  X
)  ->  x  e.  { x } )
18 simpll 753 . . . . . 6  |-  ( ( ( C  e.  PtFin  /\  X  =  Y )  /\  x  e.  X
)  ->  C  e.  PtFin
)
197eleq2d 2530 . . . . . . 7  |-  ( ( C  e.  PtFin  /\  X  =  Y )  ->  (
x  e.  X  <->  x  e.  Y ) )
2019biimpa 484 . . . . . 6  |-  ( ( ( C  e.  PtFin  /\  X  =  Y )  /\  x  e.  X
)  ->  x  e.  Y )
214ptfinfin 29757 . . . . . 6  |-  ( ( C  e.  PtFin  /\  x  e.  Y )  ->  { s  e.  C  |  x  e.  s }  e.  Fin )
2218, 20, 21syl2anc 661 . . . . 5  |-  ( ( ( C  e.  PtFin  /\  X  =  Y )  /\  x  e.  X
)  ->  { s  e.  C  |  x  e.  s }  e.  Fin )
23 eleq2 2533 . . . . . . 7  |-  ( y  =  { x }  ->  ( x  e.  y  <-> 
x  e.  { x } ) )
24 ineq2 3687 . . . . . . . . . . 11  |-  ( y  =  { x }  ->  ( s  i^i  y
)  =  ( s  i^i  { x }
) )
2524neeq1d 2737 . . . . . . . . . 10  |-  ( y  =  { x }  ->  ( ( s  i^i  y )  =/=  (/)  <->  ( s  i^i  { x } )  =/=  (/) ) )
26 disjsn 4081 . . . . . . . . . . 11  |-  ( ( s  i^i  { x } )  =  (/)  <->  -.  x  e.  s )
2726necon2abii 2726 . . . . . . . . . 10  |-  ( x  e.  s  <->  ( s  i^i  { x } )  =/=  (/) )
2825, 27syl6bbr 263 . . . . . . . . 9  |-  ( y  =  { x }  ->  ( ( s  i^i  y )  =/=  (/)  <->  x  e.  s ) )
2928rabbidv 3098 . . . . . . . 8  |-  ( y  =  { x }  ->  { s  e.  C  |  ( s  i^i  y )  =/=  (/) }  =  { s  e.  C  |  x  e.  s } )
3029eleq1d 2529 . . . . . . 7  |-  ( y  =  { x }  ->  ( { s  e.  C  |  ( s  i^i  y )  =/=  (/) }  e.  Fin  <->  { s  e.  C  |  x  e.  s }  e.  Fin ) )
3123, 30anbi12d 710 . . . . . 6  |-  ( y  =  { x }  ->  ( ( x  e.  y  /\  { s  e.  C  |  ( s  i^i  y )  =/=  (/) }  e.  Fin ) 
<->  ( x  e.  {
x }  /\  {
s  e.  C  |  x  e.  s }  e.  Fin ) ) )
3231rspcev 3207 . . . . 5  |-  ( ( { x }  e.  ~P X  /\  (
x  e.  { x }  /\  { s  e.  C  |  x  e.  s }  e.  Fin ) )  ->  E. y  e.  ~P  X ( x  e.  y  /\  {
s  e.  C  | 
( s  i^i  y
)  =/=  (/) }  e.  Fin ) )
3315, 17, 22, 32syl12anc 1221 . . . 4  |-  ( ( ( C  e.  PtFin  /\  X  =  Y )  /\  x  e.  X
)  ->  E. y  e.  ~P  X ( x  e.  y  /\  {
s  e.  C  | 
( s  i^i  y
)  =/=  (/) }  e.  Fin ) )
3433ralrimiva 2871 . . 3  |-  ( ( C  e.  PtFin  /\  X  =  Y )  ->  A. x  e.  X  E. y  e.  ~P  X ( x  e.  y  /\  {
s  e.  C  | 
( s  i^i  y
)  =/=  (/) }  e.  Fin ) )
353, 4islocfin 29755 . . 3  |-  ( C  e.  ( LocFin `  ~P X )  <->  ( ~P X  e.  Top  /\  X  =  Y  /\  A. x  e.  X  E. y  e.  ~P  X ( x  e.  y  /\  {
s  e.  C  | 
( s  i^i  y
)  =/=  (/) }  e.  Fin ) ) )
3613, 7, 34, 35syl3anbrc 1175 . 2  |-  ( ( C  e.  PtFin  /\  X  =  Y )  ->  C  e.  ( LocFin `  ~P X ) )
376, 36impbii 188 1  |-  ( C  e.  ( LocFin `  ~P X )  <->  ( C  e.  PtFin  /\  X  =  Y ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3106    i^i cin 3468   (/)c0 3778   ~Pcpw 4003   {csn 4020   U.cuni 4238   ` cfv 5579   Fincfn 7506   Topctop 19154   PtFincptfin 29720   LocFinclocfin 29721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-om 6672  df-er 7301  df-en 7507  df-fin 7510  df-top 19159  df-ptfin 29724  df-locfin 29725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator