Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  locfincmp Structured version   Unicode version

Theorem locfincmp 28747
Description: For a compact space, the locally finite covers are precisely the finite covers. Sadly, this property does not properly characterize all compact spaces. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
locfincmp.1  |-  X  = 
U. J
locfincmp.2  |-  Y  = 
U. C
Assertion
Ref Expression
locfincmp  |-  ( J  e.  Comp  ->  ( C  e.  ( LocFin `  J
)  <->  ( C  e. 
Fin  /\  X  =  Y ) ) )

Proof of Theorem locfincmp
Dummy variables  o 
c  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfincmp.1 . . . . . . . . . 10  |-  X  = 
U. J
21locfinnei 28745 . . . . . . . . 9  |-  ( ( C  e.  ( LocFin `  J )  /\  x  e.  X )  ->  E. o  e.  J  ( x  e.  o  /\  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin ) )
32ralrimiva 2830 . . . . . . . 8  |-  ( C  e.  ( LocFin `  J
)  ->  A. x  e.  X  E. o  e.  J  ( x  e.  o  /\  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin ) )
41cmpcov2 19135 . . . . . . . 8  |-  ( ( J  e.  Comp  /\  A. x  e.  X  E. o  e.  J  (
x  e.  o  /\  { s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin ) )  ->  E. c  e.  ( ~P J  i^i  Fin ) ( X  = 
U. c  /\  A. o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin ) )
53, 4sylan2 474 . . . . . . 7  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  E. c  e.  ( ~P J  i^i  Fin ) ( X  = 
U. c  /\  A. o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin ) )
6 elfpw 7727 . . . . . . . . 9  |-  ( c  e.  ( ~P J  i^i  Fin )  <->  ( c  C_  J  /\  c  e. 
Fin ) )
7 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
c  e.  Fin )
8 eldifsn 4111 . . . . . . . . . . . . 13  |-  ( x  e.  ( C  \  { (/) } )  <->  ( x  e.  C  /\  x  =/=  (/) ) )
9 elunii 4207 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  x  /\  x  e.  C )  ->  y  e.  U. C
)
10 locfincmp.2 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  Y  = 
U. C
119, 10syl6eleqr 2553 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  x  /\  x  e.  C )  ->  y  e.  Y )
1211ancoms 453 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  C  /\  y  e.  x )  ->  y  e.  Y )
1312adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  -> 
y  e.  Y )
141, 10locfinbas 28744 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( C  e.  ( LocFin `  J
)  ->  X  =  Y )
1514adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  X  =  Y )
1615ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  ->  X  =  Y )
1713, 16eleqtrrd 2545 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  -> 
y  e.  X )
18 simplr 754 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  ->  X  =  U. c
)
1917, 18eleqtrd 2544 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  -> 
y  e.  U. c
)
20 eluni2 4206 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  U. c  <->  E. o  e.  c  y  e.  o )
2119, 20sylib 196 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  ->  E. o  e.  c 
y  e.  o )
22 simplrl 759 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  x  e.  C )
23 simplrr 760 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  y  e.  x )
24 simprr 756 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  y  e.  o )
25 inelcm 3844 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  x  /\  y  e.  o )  ->  ( x  i^i  o
)  =/=  (/) )
2623, 24, 25syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  (
x  i^i  o )  =/=  (/) )
27 ineq1 3656 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( s  =  x  ->  (
s  i^i  o )  =  ( x  i^i  o ) )
2827neeq1d 2729 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( s  =  x  ->  (
( s  i^i  o
)  =/=  (/)  <->  ( x  i^i  o )  =/=  (/) ) )
2928elrab 3224 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  <->  ( x  e.  C  /\  ( x  i^i  o )  =/=  (/) ) )
3022, 26, 29sylanbrc 664 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  ( o  e.  c  /\  y  e.  o ) )  ->  x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } )
3130expr 615 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  /\  o  e.  c )  ->  ( y  e.  o  ->  x  e.  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) } ) )
3231reximdva 2934 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  -> 
( E. o  e.  c  y  e.  o  ->  E. o  e.  c  x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } ) )
3321, 32mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  ( x  e.  C  /\  y  e.  x ) )  ->  E. o  e.  c  x  e.  { s  e.  C  |  (
s  i^i  o )  =/=  (/) } )
3433expr 615 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  x  e.  C )  ->  (
y  e.  x  ->  E. o  e.  c  x  e.  { s  e.  C  |  (
s  i^i  o )  =/=  (/) } ) )
3534exlimdv 1691 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  x  e.  C )  ->  ( E. y  y  e.  x  ->  E. o  e.  c  x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } ) )
36 n0 3757 . . . . . . . . . . . . . . 15  |-  ( x  =/=  (/)  <->  E. y  y  e.  x )
37 eliun 4286 . . . . . . . . . . . . . . 15  |-  ( x  e.  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  <->  E. o  e.  c  x  e.  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } )
3835, 36, 373imtr4g 270 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  /\  ( c  C_  J  /\  c  e. 
Fin ) )  /\  X  =  U. c
)  /\  x  e.  C )  ->  (
x  =/=  (/)  ->  x  e.  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } ) )
3938expimpd 603 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
( ( x  e.  C  /\  x  =/=  (/) )  ->  x  e. 
U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } ) )
408, 39syl5bi 217 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
( x  e.  ( C  \  { (/) } )  ->  x  e.  U_ o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) } ) )
4140ssrdv 3473 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
( C  \  { (/)
} )  C_  U_ o  e.  c  { s  e.  C  |  (
s  i^i  o )  =/=  (/) } )
42 iunfi 7713 . . . . . . . . . . . . 13  |-  ( ( c  e.  Fin  /\  A. o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin )  ->  U_ o  e.  c  { s  e.  C  |  (
s  i^i  o )  =/=  (/) }  e.  Fin )
4342ex 434 . . . . . . . . . . . 12  |-  ( c  e.  Fin  ->  ( A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin  ->  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin ) )
44 ssfi 7647 . . . . . . . . . . . . 13  |-  ( (
U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin  /\  ( C  \  { (/) } )  C_  U_ o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) } )  ->  ( C  \  { (/) } )  e. 
Fin )
4544expcom 435 . . . . . . . . . . . 12  |-  ( ( C  \  { (/) } )  C_  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  ->  ( U_ o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin  ->  ( C  \  { (/) } )  e. 
Fin ) )
4643, 45sylan9 657 . . . . . . . . . . 11  |-  ( ( c  e.  Fin  /\  ( C  \  { (/) } )  C_  U_ o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) } )  ->  ( A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin  ->  ( C  \  { (/) } )  e. 
Fin ) )
477, 41, 46syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Comp  /\  C  e.  (
LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  /\  X  =  U. c )  -> 
( A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin  ->  ( C  \  { (/) } )  e.  Fin )
)
4847expimpd 603 . . . . . . . . 9  |-  ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J ) )  /\  ( c  C_  J  /\  c  e.  Fin ) )  ->  (
( X  =  U. c  /\  A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin )  ->  ( C  \  { (/)
} )  e.  Fin ) )
496, 48sylan2b 475 . . . . . . . 8  |-  ( ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J ) )  /\  c  e.  ( ~P J  i^i  Fin ) )  ->  ( ( X  =  U. c  /\  A. o  e.  c  {
s  e.  C  | 
( s  i^i  o
)  =/=  (/) }  e.  Fin )  ->  ( C 
\  { (/) } )  e.  Fin ) )
5049rexlimdva 2947 . . . . . . 7  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  ( E. c  e.  ( ~P J  i^i  Fin ) ( X  =  U. c  /\  A. o  e.  c  { s  e.  C  |  ( s  i^i  o )  =/=  (/) }  e.  Fin )  ->  ( C 
\  { (/) } )  e.  Fin ) )
515, 50mpd 15 . . . . . 6  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  ( C  \  { (/) } )  e. 
Fin )
52 snfi 7503 . . . . . 6  |-  { (/) }  e.  Fin
53 unfi 7693 . . . . . 6  |-  ( ( ( C  \  { (/)
} )  e.  Fin  /\ 
{ (/) }  e.  Fin )  ->  ( ( C 
\  { (/) } )  u.  { (/) } )  e.  Fin )
5451, 52, 53sylancl 662 . . . . 5  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  ( ( C  \  { (/) } )  u.  { (/) } )  e.  Fin )
55 ssun1 3630 . . . . . 6  |-  C  C_  ( C  u.  { (/) } )
56 undif1 3865 . . . . . 6  |-  ( ( C  \  { (/) } )  u.  { (/) } )  =  ( C  u.  { (/) } )
5755, 56sseqtr4i 3500 . . . . 5  |-  C  C_  ( ( C  \  { (/) } )  u. 
{ (/) } )
58 ssfi 7647 . . . . 5  |-  ( ( ( ( C  \  { (/) } )  u. 
{ (/) } )  e. 
Fin  /\  C  C_  (
( C  \  { (/)
} )  u.  { (/)
} ) )  ->  C  e.  Fin )
5954, 57, 58sylancl 662 . . . 4  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  C  e.  Fin )
6059, 15jca 532 . . 3  |-  ( ( J  e.  Comp  /\  C  e.  ( LocFin `  J )
)  ->  ( C  e.  Fin  /\  X  =  Y ) )
6160ex 434 . 2  |-  ( J  e.  Comp  ->  ( C  e.  ( LocFin `  J
)  ->  ( C  e.  Fin  /\  X  =  Y ) ) )
62 cmptop 19140 . . 3  |-  ( J  e.  Comp  ->  J  e. 
Top )
631, 10finlocfin 28742 . . . 4  |-  ( ( J  e.  Top  /\  C  e.  Fin  /\  X  =  Y )  ->  C  e.  ( LocFin `  J )
)
64633expib 1191 . . 3  |-  ( J  e.  Top  ->  (
( C  e.  Fin  /\  X  =  Y )  ->  C  e.  (
LocFin `  J ) ) )
6562, 64syl 16 . 2  |-  ( J  e.  Comp  ->  ( ( C  e.  Fin  /\  X  =  Y )  ->  C  e.  ( LocFin `  J ) ) )
6661, 65impbid 191 1  |-  ( J  e.  Comp  ->  ( C  e.  ( LocFin `  J
)  <->  ( C  e. 
Fin  /\  X  =  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2648   A.wral 2799   E.wrex 2800   {crab 2803    \ cdif 3436    u. cun 3437    i^i cin 3438    C_ wss 3439   (/)c0 3748   ~Pcpw 3971   {csn 3988   U.cuni 4202   U_ciun 4282   ` cfv 5529   Fincfn 7423   Topctop 18640   Compccmp 19131   LocFinclocfin 28705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-en 7424  df-fin 7427  df-top 18645  df-cmp 19132  df-locfin 28709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator