MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1o1 Structured version   Unicode version

Theorem lo1o1 13367
Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1o1  |-  ( F : A --> CC  ->  ( F  e.  O(1)  <->  ( abs  o.  F )  e.  <_O(1) ) )

Proof of Theorem lo1o1
Dummy variables  x  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1dm 13365 . . 3  |-  ( F  e.  O(1)  ->  dom  F  C_  RR )
2 fdm 5741 . . . 4  |-  ( F : A --> CC  ->  dom 
F  =  A )
32sseq1d 3526 . . 3  |-  ( F : A --> CC  ->  ( dom  F  C_  RR  <->  A 
C_  RR ) )
41, 3syl5ib 219 . 2  |-  ( F : A --> CC  ->  ( F  e.  O(1)  ->  A  C_  RR ) )
5 lo1dm 13354 . . 3  |-  ( ( abs  o.  F )  e.  <_O(1)  ->  dom  ( abs 
o.  F )  C_  RR )
6 absf 13182 . . . . . 6  |-  abs : CC
--> RR
7 fco 5747 . . . . . 6  |-  ( ( abs : CC --> RR  /\  F : A --> CC )  ->  ( abs  o.  F ) : A --> RR )
86, 7mpan 670 . . . . 5  |-  ( F : A --> CC  ->  ( abs  o.  F ) : A --> RR )
9 fdm 5741 . . . . 5  |-  ( ( abs  o.  F ) : A --> RR  ->  dom  ( abs  o.  F
)  =  A )
108, 9syl 16 . . . 4  |-  ( F : A --> CC  ->  dom  ( abs  o.  F
)  =  A )
1110sseq1d 3526 . . 3  |-  ( F : A --> CC  ->  ( dom  ( abs  o.  F )  C_  RR  <->  A 
C_  RR ) )
125, 11syl5ib 219 . 2  |-  ( F : A --> CC  ->  ( ( abs  o.  F
)  e.  <_O(1)  ->  A  C_  RR ) )
13 fvco3 5950 . . . . . . . . 9  |-  ( ( F : A --> CC  /\  y  e.  A )  ->  ( ( abs  o.  F ) `  y
)  =  ( abs `  ( F `  y
) ) )
1413adantlr 714 . . . . . . . 8  |-  ( ( ( F : A --> CC  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( ( abs  o.  F ) `  y )  =  ( abs `  ( F `
 y ) ) )
1514breq1d 4466 . . . . . . 7  |-  ( ( ( F : A --> CC  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( (
( abs  o.  F
) `  y )  <_  m  <->  ( abs `  ( F `  y )
)  <_  m )
)
1615imbi2d 316 . . . . . 6  |-  ( ( ( F : A --> CC  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( (
x  <_  y  ->  ( ( abs  o.  F
) `  y )  <_  m )  <->  ( x  <_  y  ->  ( abs `  ( F `  y
) )  <_  m
) ) )
1716ralbidva 2893 . . . . 5  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( A. y  e.  A  ( x  <_ 
y  ->  ( ( abs  o.  F ) `  y )  <_  m
)  <->  A. y  e.  A  ( x  <_  y  -> 
( abs `  ( F `  y )
)  <_  m )
) )
18172rexbidv 2975 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( ( abs  o.  F ) `  y )  <_  m
)  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  (
x  <_  y  ->  ( abs `  ( F `
 y ) )  <_  m ) ) )
19 ello12 13351 . . . . 5  |-  ( ( ( abs  o.  F
) : A --> RR  /\  A  C_  RR )  -> 
( ( abs  o.  F )  e.  <_O(1)  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( ( abs  o.  F ) `  y )  <_  m
) ) )
208, 19sylan 471 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( ( abs  o.  F )  e.  <_O(1)  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( ( abs  o.  F ) `  y )  <_  m
) ) )
21 elo12 13362 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( F  e.  O(1)  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( abs `  ( F `  y
) )  <_  m
) ) )
2218, 20, 213bitr4rd 286 . . 3  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( F  e.  O(1)  <->  ( abs  o.  F )  e. 
<_O(1) ) )
2322ex 434 . 2  |-  ( F : A --> CC  ->  ( A  C_  RR  ->  ( F  e.  O(1)  <->  ( abs  o.  F )  e.  <_O(1) ) ) )
244, 12, 23pm5.21ndd 354 1  |-  ( F : A --> CC  ->  ( F  e.  O(1)  <->  ( abs  o.  F )  e.  <_O(1) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808    C_ wss 3471   class class class wbr 4456   dom cdm 5008    o. ccom 5012   -->wf 5590   ` cfv 5594   CCcc 9507   RRcr 9508    <_ cle 9646   abscabs 13079   O(1)co1 13321   <_O(1)clo1 13322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-ico 11560  df-seq 12111  df-exp 12170  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-o1 13325  df-lo1 13326
This theorem is referenced by:  lo1o12  13368  o1res  13395
  Copyright terms: Public domain W3C validator