MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1le Structured version   Unicode version

Theorem lo1le 13125
Description: Transfer eventual upper boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1le.1  |-  ( ph  ->  M  e.  RR )
lo1le.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_O(1) )
lo1le.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
lo1le.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
lo1le.5  |-  ( (
ph  /\  ( x  e.  A  /\  M  <_  x ) )  ->  C  <_  B )
Assertion
Ref Expression
lo1le  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_O(1) )
Distinct variable groups:    x, A    x, M    ph, x
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem lo1le
Dummy variables  m  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1le.2 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_O(1) )
2 simpr 458 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
3 lo1le.1 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
43adantr 462 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  M  e.  RR )
5 ifcl 3828 . . . . . 6  |-  ( ( y  e.  RR  /\  M  e.  RR )  ->  if ( M  <_ 
y ,  y ,  M )  e.  RR )
62, 4, 5syl2anc 656 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  if ( M  <_  y , 
y ,  M )  e.  RR )
73ad2antrr 720 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  M  e.  RR )
8 simplr 749 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  y  e.  RR )
9 lo1le.3 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
109ralrimiva 2797 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  A  B  e.  V )
11 dmmptg 5332 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
1210, 11syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
13 lo1dm 12993 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  A  |->  B )  e.  <_O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
141, 13syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
1512, 14eqsstr3d 3388 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  RR )
1615ad2antrr 720 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  A  C_  RR )
17 simprr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  x  e.  A )
1816, 17sseldd 3354 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  x  e.  RR )
19 maxle 11158 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  y  e.  RR  /\  x  e.  RR )  ->  ( if ( M  <_  y ,  y ,  M
)  <_  x  <->  ( M  <_  x  /\  y  <_  x ) ) )
207, 8, 18, 19syl3anc 1213 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( if ( M  <_  y ,  y ,  M )  <_  x  <->  ( M  <_  x  /\  y  <_  x ) ) )
21 simpr 458 . . . . . . . . . . 11  |-  ( ( M  <_  x  /\  y  <_  x )  -> 
y  <_  x )
2220, 21syl6bi 228 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( if ( M  <_  y ,  y ,  M )  <_  x  ->  y  <_  x ) )
2322imim1d 75 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( (
y  <_  x  ->  B  <_  m )  -> 
( if ( M  <_  y ,  y ,  M )  <_  x  ->  B  <_  m
) ) )
24 lo1le.5 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  A  /\  M  <_  x ) )  ->  C  <_  B )
2524adantlr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  A  /\  M  <_  x ) )  ->  C  <_  B
)
2625adantrll 716 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  C  <_  B )
27 simpl 454 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  RR )  ->  ph )
28 simplr 749 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
)  ->  x  e.  A )
29 lo1le.4 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
3027, 28, 29syl2an 474 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  C  e.  RR )
319, 1lo1mptrcl 13095 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
3227, 28, 31syl2an 474 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  B  e.  RR )
33 simprll 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  m  e.  RR )
34 letr 9464 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  RR  /\  B  e.  RR  /\  m  e.  RR )  ->  (
( C  <_  B  /\  B  <_  m )  ->  C  <_  m
) )
3530, 32, 33, 34syl3anc 1213 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  (
( C  <_  B  /\  B  <_  m )  ->  C  <_  m
) )
3626, 35mpand 670 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  ( B  <_  m  ->  C  <_  m ) )
3736expr 612 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( M  <_  x  ->  ( B  <_  m  ->  C  <_  m ) ) )
3837adantrd 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( ( M  <_  x  /\  y  <_  x )  ->  ( B  <_  m  ->  C  <_  m ) ) )
3920, 38sylbid 215 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( if ( M  <_  y ,  y ,  M )  <_  x  ->  ( B  <_  m  ->  C  <_  m ) ) )
4039a2d 26 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( ( if ( M  <_  y ,  y ,  M
)  <_  x  ->  B  <_  m )  -> 
( if ( M  <_  y ,  y ,  M )  <_  x  ->  C  <_  m
) ) )
4123, 40syld 44 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( (
y  <_  x  ->  B  <_  m )  -> 
( if ( M  <_  y ,  y ,  M )  <_  x  ->  C  <_  m
) ) )
4241anassrs 643 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( (
y  <_  x  ->  B  <_  m )  -> 
( if ( M  <_  y ,  y ,  M )  <_  x  ->  C  <_  m
) ) )
4342ralimdva 2792 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  RR )  ->  ( A. x  e.  A  ( y  <_  x  ->  B  <_  m )  ->  A. x  e.  A  ( if ( M  <_ 
y ,  y ,  M )  <_  x  ->  C  <_  m )
) )
4443reximdva 2826 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. m  e.  RR  A. x  e.  A  (
y  <_  x  ->  B  <_  m )  ->  E. m  e.  RR  A. x  e.  A  ( if ( M  <_ 
y ,  y ,  M )  <_  x  ->  C  <_  m )
) )
45 breq1 4292 . . . . . . . 8  |-  ( z  =  if ( M  <_  y ,  y ,  M )  -> 
( z  <_  x  <->  if ( M  <_  y ,  y ,  M
)  <_  x )
)
4645imbi1d 317 . . . . . . 7  |-  ( z  =  if ( M  <_  y ,  y ,  M )  -> 
( ( z  <_  x  ->  C  <_  m
)  <->  ( if ( M  <_  y , 
y ,  M )  <_  x  ->  C  <_  m ) ) )
4746rexralbidv 2757 . . . . . 6  |-  ( z  =  if ( M  <_  y ,  y ,  M )  -> 
( E. m  e.  RR  A. x  e.  A  ( z  <_  x  ->  C  <_  m
)  <->  E. m  e.  RR  A. x  e.  A  ( if ( M  <_ 
y ,  y ,  M )  <_  x  ->  C  <_  m )
) )
4847rspcev 3070 . . . . 5  |-  ( ( if ( M  <_ 
y ,  y ,  M )  e.  RR  /\ 
E. m  e.  RR  A. x  e.  A  ( if ( M  <_ 
y ,  y ,  M )  <_  x  ->  C  <_  m )
)  ->  E. z  e.  RR  E. m  e.  RR  A. x  e.  A  ( z  <_  x  ->  C  <_  m
) )
496, 44, 48syl6an 542 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. m  e.  RR  A. x  e.  A  (
y  <_  x  ->  B  <_  m )  ->  E. z  e.  RR  E. m  e.  RR  A. x  e.  A  (
z  <_  x  ->  C  <_  m ) ) )
5049rexlimdva 2839 . . 3  |-  ( ph  ->  ( E. y  e.  RR  E. m  e.  RR  A. x  e.  A  ( y  <_  x  ->  B  <_  m
)  ->  E. z  e.  RR  E. m  e.  RR  A. x  e.  A  ( z  <_  x  ->  C  <_  m
) ) )
5115, 31ello1mpt 12995 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_O(1)  <->  E. y  e.  RR  E. m  e.  RR  A. x  e.  A  (
y  <_  x  ->  B  <_  m ) ) )
5215, 29ello1mpt 12995 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. 
<_O(1)  <->  E. z  e.  RR  E. m  e.  RR  A. x  e.  A  (
z  <_  x  ->  C  <_  m ) ) )
5350, 51, 523imtr4d 268 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_O(1)  ->  ( x  e.  A  |->  C )  e. 
<_O(1) ) )
541, 53mpd 15 1  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714    C_ wss 3325   ifcif 3788   class class class wbr 4289    e. cmpt 4347   dom cdm 4836   RRcr 9277    <_ cle 9415   <_O(1)clo1 12961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-pre-lttri 9352  ax-pre-lttrn 9353
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-po 4637  df-so 4638  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-er 7097  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-ico 11302  df-lo1 12965
This theorem is referenced by:  o1le  13126  vmalogdivsum2  22746  pntrlog2bndlem1  22785  pntrlog2bndlem5  22789
  Copyright terms: Public domain W3C validator