MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1le Structured version   Unicode version

Theorem lo1le 13651
Description: Transfer eventual upper boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1le.1  |-  ( ph  ->  M  e.  RR )
lo1le.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_O(1) )
lo1le.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
lo1le.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
lo1le.5  |-  ( (
ph  /\  ( x  e.  A  /\  M  <_  x ) )  ->  C  <_  B )
Assertion
Ref Expression
lo1le  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_O(1) )
Distinct variable groups:    x, A    x, M    ph, x
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem lo1le
Dummy variables  m  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1le.2 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_O(1) )
2 simpr 462 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
3 lo1le.1 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
43adantr 466 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  M  e.  RR )
52, 4ifcld 3890 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  if ( M  <_  y , 
y ,  M )  e.  RR )
63ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  M  e.  RR )
7 simplr 760 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  y  e.  RR )
8 lo1le.3 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
98ralrimiva 2773 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  A  B  e.  V )
10 dmmptg 5287 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
119, 10syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
12 lo1dm 13519 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  A  |->  B )  e.  <_O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
131, 12syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
1411, 13eqsstr3d 3435 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  RR )
1514ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  A  C_  RR )
16 simprr 764 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  x  e.  A )
1715, 16sseldd 3401 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  x  e.  RR )
18 maxle 11429 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  y  e.  RR  /\  x  e.  RR )  ->  ( if ( M  <_  y ,  y ,  M
)  <_  x  <->  ( M  <_  x  /\  y  <_  x ) ) )
196, 7, 17, 18syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( if ( M  <_  y ,  y ,  M )  <_  x  <->  ( M  <_  x  /\  y  <_  x ) ) )
20 simpr 462 . . . . . . . . . . 11  |-  ( ( M  <_  x  /\  y  <_  x )  -> 
y  <_  x )
2119, 20syl6bi 231 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( if ( M  <_  y ,  y ,  M )  <_  x  ->  y  <_  x ) )
2221imim1d 78 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( (
y  <_  x  ->  B  <_  m )  -> 
( if ( M  <_  y ,  y ,  M )  <_  x  ->  B  <_  m
) ) )
23 lo1le.5 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  A  /\  M  <_  x ) )  ->  C  <_  B )
2423adantlr 719 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  A  /\  M  <_  x ) )  ->  C  <_  B
)
2524adantrll 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  C  <_  B )
26 simpl 458 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  RR )  ->  ph )
27 simplr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
)  ->  x  e.  A )
28 lo1le.4 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
2926, 27, 28syl2an 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  C  e.  RR )
308, 1lo1mptrcl 13621 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
3126, 27, 30syl2an 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  B  e.  RR )
32 simprll 770 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  m  e.  RR )
33 letr 9671 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  RR  /\  B  e.  RR  /\  m  e.  RR )  ->  (
( C  <_  B  /\  B  <_  m )  ->  C  <_  m
) )
3429, 31, 32, 33syl3anc 1264 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  (
( C  <_  B  /\  B  <_  m )  ->  C  <_  m
) )
3525, 34mpand 679 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  ( B  <_  m  ->  C  <_  m ) )
3635expr 618 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( M  <_  x  ->  ( B  <_  m  ->  C  <_  m ) ) )
3736adantrd 469 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( ( M  <_  x  /\  y  <_  x )  ->  ( B  <_  m  ->  C  <_  m ) ) )
3819, 37sylbid 218 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( if ( M  <_  y ,  y ,  M )  <_  x  ->  ( B  <_  m  ->  C  <_  m ) ) )
3938a2d 29 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( ( if ( M  <_  y ,  y ,  M
)  <_  x  ->  B  <_  m )  -> 
( if ( M  <_  y ,  y ,  M )  <_  x  ->  C  <_  m
) ) )
4022, 39syld 45 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( (
y  <_  x  ->  B  <_  m )  -> 
( if ( M  <_  y ,  y ,  M )  <_  x  ->  C  <_  m
) ) )
4140anassrs 652 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( (
y  <_  x  ->  B  <_  m )  -> 
( if ( M  <_  y ,  y ,  M )  <_  x  ->  C  <_  m
) ) )
4241ralimdva 2767 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  RR )  ->  ( A. x  e.  A  ( y  <_  x  ->  B  <_  m )  ->  A. x  e.  A  ( if ( M  <_ 
y ,  y ,  M )  <_  x  ->  C  <_  m )
) )
4342reximdva 2833 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. m  e.  RR  A. x  e.  A  (
y  <_  x  ->  B  <_  m )  ->  E. m  e.  RR  A. x  e.  A  ( if ( M  <_ 
y ,  y ,  M )  <_  x  ->  C  <_  m )
) )
44 breq1 4362 . . . . . . . 8  |-  ( z  =  if ( M  <_  y ,  y ,  M )  -> 
( z  <_  x  <->  if ( M  <_  y ,  y ,  M
)  <_  x )
)
4544imbi1d 318 . . . . . . 7  |-  ( z  =  if ( M  <_  y ,  y ,  M )  -> 
( ( z  <_  x  ->  C  <_  m
)  <->  ( if ( M  <_  y , 
y ,  M )  <_  x  ->  C  <_  m ) ) )
4645rexralbidv 2880 . . . . . 6  |-  ( z  =  if ( M  <_  y ,  y ,  M )  -> 
( E. m  e.  RR  A. x  e.  A  ( z  <_  x  ->  C  <_  m
)  <->  E. m  e.  RR  A. x  e.  A  ( if ( M  <_ 
y ,  y ,  M )  <_  x  ->  C  <_  m )
) )
4746rspcev 3118 . . . . 5  |-  ( ( if ( M  <_ 
y ,  y ,  M )  e.  RR  /\ 
E. m  e.  RR  A. x  e.  A  ( if ( M  <_ 
y ,  y ,  M )  <_  x  ->  C  <_  m )
)  ->  E. z  e.  RR  E. m  e.  RR  A. x  e.  A  ( z  <_  x  ->  C  <_  m
) )
485, 43, 47syl6an 547 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. m  e.  RR  A. x  e.  A  (
y  <_  x  ->  B  <_  m )  ->  E. z  e.  RR  E. m  e.  RR  A. x  e.  A  (
z  <_  x  ->  C  <_  m ) ) )
4948rexlimdva 2850 . . 3  |-  ( ph  ->  ( E. y  e.  RR  E. m  e.  RR  A. x  e.  A  ( y  <_  x  ->  B  <_  m
)  ->  E. z  e.  RR  E. m  e.  RR  A. x  e.  A  ( z  <_  x  ->  C  <_  m
) ) )
5014, 30ello1mpt 13521 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_O(1)  <->  E. y  e.  RR  E. m  e.  RR  A. x  e.  A  (
y  <_  x  ->  B  <_  m ) ) )
5114, 28ello1mpt 13521 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. 
<_O(1)  <->  E. z  e.  RR  E. m  e.  RR  A. x  e.  A  (
z  <_  x  ->  C  <_  m ) ) )
5249, 50, 513imtr4d 271 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_O(1)  ->  ( x  e.  A  |->  C )  e. 
<_O(1) ) )
531, 52mpd 15 1  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2708   E.wrex 2709    C_ wss 3372   ifcif 3847   class class class wbr 4359    |-> cmpt 4418   dom cdm 4789   RRcr 9482    <_ cle 9620   <_O(1)clo1 13487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-sep 4482  ax-nul 4491  ax-pow 4538  ax-pr 4596  ax-un 6534  ax-cnex 9539  ax-resscn 9540  ax-pre-lttri 9557  ax-pre-lttrn 9558
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-nel 2596  df-ral 2713  df-rex 2714  df-rab 2717  df-v 3018  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-nul 3698  df-if 3848  df-pw 3919  df-sn 3935  df-pr 3937  df-op 3941  df-uni 4156  df-br 4360  df-opab 4419  df-mpt 4420  df-id 4704  df-po 4710  df-so 4711  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-iota 5501  df-fun 5539  df-fn 5540  df-f 5541  df-f1 5542  df-fo 5543  df-f1o 5544  df-fv 5545  df-ov 6245  df-oprab 6246  df-mpt2 6247  df-er 7311  df-pm 7423  df-en 7518  df-dom 7519  df-sdom 7520  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-ico 11585  df-lo1 13491
This theorem is referenced by:  o1le  13652  vmalogdivsum2  24311  pntrlog2bndlem1  24350  pntrlog2bndlem5  24354
  Copyright terms: Public domain W3C validator