MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1le Structured version   Unicode version

Theorem lo1le 13456
Description: Transfer eventual upper boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1le.1  |-  ( ph  ->  M  e.  RR )
lo1le.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_O(1) )
lo1le.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
lo1le.4  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
lo1le.5  |-  ( (
ph  /\  ( x  e.  A  /\  M  <_  x ) )  ->  C  <_  B )
Assertion
Ref Expression
lo1le  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_O(1) )
Distinct variable groups:    x, A    x, M    ph, x
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem lo1le
Dummy variables  m  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1le.2 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_O(1) )
2 simpr 461 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
3 lo1le.1 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
43adantr 465 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  M  e.  RR )
52, 4ifcld 3969 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  if ( M  <_  y , 
y ,  M )  e.  RR )
63ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  M  e.  RR )
7 simplr 755 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  y  e.  RR )
8 lo1le.3 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
98ralrimiva 2857 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  A  B  e.  V )
10 dmmptg 5494 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
119, 10syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
12 lo1dm 13324 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  A  |->  B )  e.  <_O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
131, 12syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
1411, 13eqsstr3d 3524 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  RR )
1514ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  A  C_  RR )
16 simprr 757 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  x  e.  A )
1715, 16sseldd 3490 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  x  e.  RR )
18 maxle 11402 . . . . . . . . . . . 12  |-  ( ( M  e.  RR  /\  y  e.  RR  /\  x  e.  RR )  ->  ( if ( M  <_  y ,  y ,  M
)  <_  x  <->  ( M  <_  x  /\  y  <_  x ) ) )
196, 7, 17, 18syl3anc 1229 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( if ( M  <_  y ,  y ,  M )  <_  x  <->  ( M  <_  x  /\  y  <_  x ) ) )
20 simpr 461 . . . . . . . . . . 11  |-  ( ( M  <_  x  /\  y  <_  x )  -> 
y  <_  x )
2119, 20syl6bi 228 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( if ( M  <_  y ,  y ,  M )  <_  x  ->  y  <_  x ) )
2221imim1d 75 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( (
y  <_  x  ->  B  <_  m )  -> 
( if ( M  <_  y ,  y ,  M )  <_  x  ->  B  <_  m
) ) )
23 lo1le.5 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  A  /\  M  <_  x ) )  ->  C  <_  B )
2423adantlr 714 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  A  /\  M  <_  x ) )  ->  C  <_  B
)
2524adantrll 721 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  C  <_  B )
26 simpl 457 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  RR )  ->  ph )
27 simplr 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
)  ->  x  e.  A )
28 lo1le.4 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
2926, 27, 28syl2an 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  C  e.  RR )
308, 1lo1mptrcl 13426 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
3126, 27, 30syl2an 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  B  e.  RR )
32 simprll 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  m  e.  RR )
33 letr 9681 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  RR  /\  B  e.  RR  /\  m  e.  RR )  ->  (
( C  <_  B  /\  B  <_  m )  ->  C  <_  m
) )
3429, 31, 32, 33syl3anc 1229 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  (
( C  <_  B  /\  B  <_  m )  ->  C  <_  m
) )
3525, 34mpand 675 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
( m  e.  RR  /\  x  e.  A )  /\  M  <_  x
) )  ->  ( B  <_  m  ->  C  <_  m ) )
3635expr 615 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( M  <_  x  ->  ( B  <_  m  ->  C  <_  m ) ) )
3736adantrd 468 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( ( M  <_  x  /\  y  <_  x )  ->  ( B  <_  m  ->  C  <_  m ) ) )
3819, 37sylbid 215 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( if ( M  <_  y ,  y ,  M )  <_  x  ->  ( B  <_  m  ->  C  <_  m ) ) )
3938a2d 26 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( ( if ( M  <_  y ,  y ,  M
)  <_  x  ->  B  <_  m )  -> 
( if ( M  <_  y ,  y ,  M )  <_  x  ->  C  <_  m
) ) )
4022, 39syld 44 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
m  e.  RR  /\  x  e.  A )
)  ->  ( (
y  <_  x  ->  B  <_  m )  -> 
( if ( M  <_  y ,  y ,  M )  <_  x  ->  C  <_  m
) ) )
4140anassrs 648 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  m  e.  RR )  /\  x  e.  A
)  ->  ( (
y  <_  x  ->  B  <_  m )  -> 
( if ( M  <_  y ,  y ,  M )  <_  x  ->  C  <_  m
) ) )
4241ralimdva 2851 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  m  e.  RR )  ->  ( A. x  e.  A  ( y  <_  x  ->  B  <_  m )  ->  A. x  e.  A  ( if ( M  <_ 
y ,  y ,  M )  <_  x  ->  C  <_  m )
) )
4342reximdva 2918 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. m  e.  RR  A. x  e.  A  (
y  <_  x  ->  B  <_  m )  ->  E. m  e.  RR  A. x  e.  A  ( if ( M  <_ 
y ,  y ,  M )  <_  x  ->  C  <_  m )
) )
44 breq1 4440 . . . . . . . 8  |-  ( z  =  if ( M  <_  y ,  y ,  M )  -> 
( z  <_  x  <->  if ( M  <_  y ,  y ,  M
)  <_  x )
)
4544imbi1d 317 . . . . . . 7  |-  ( z  =  if ( M  <_  y ,  y ,  M )  -> 
( ( z  <_  x  ->  C  <_  m
)  <->  ( if ( M  <_  y , 
y ,  M )  <_  x  ->  C  <_  m ) ) )
4645rexralbidv 2962 . . . . . 6  |-  ( z  =  if ( M  <_  y ,  y ,  M )  -> 
( E. m  e.  RR  A. x  e.  A  ( z  <_  x  ->  C  <_  m
)  <->  E. m  e.  RR  A. x  e.  A  ( if ( M  <_ 
y ,  y ,  M )  <_  x  ->  C  <_  m )
) )
4746rspcev 3196 . . . . 5  |-  ( ( if ( M  <_ 
y ,  y ,  M )  e.  RR  /\ 
E. m  e.  RR  A. x  e.  A  ( if ( M  <_ 
y ,  y ,  M )  <_  x  ->  C  <_  m )
)  ->  E. z  e.  RR  E. m  e.  RR  A. x  e.  A  ( z  <_  x  ->  C  <_  m
) )
485, 43, 47syl6an 545 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( E. m  e.  RR  A. x  e.  A  (
y  <_  x  ->  B  <_  m )  ->  E. z  e.  RR  E. m  e.  RR  A. x  e.  A  (
z  <_  x  ->  C  <_  m ) ) )
4948rexlimdva 2935 . . 3  |-  ( ph  ->  ( E. y  e.  RR  E. m  e.  RR  A. x  e.  A  ( y  <_  x  ->  B  <_  m
)  ->  E. z  e.  RR  E. m  e.  RR  A. x  e.  A  ( z  <_  x  ->  C  <_  m
) ) )
5014, 30ello1mpt 13326 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_O(1)  <->  E. y  e.  RR  E. m  e.  RR  A. x  e.  A  (
y  <_  x  ->  B  <_  m ) ) )
5114, 28ello1mpt 13326 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. 
<_O(1)  <->  E. z  e.  RR  E. m  e.  RR  A. x  e.  A  (
z  <_  x  ->  C  <_  m ) ) )
5249, 50, 513imtr4d 268 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_O(1)  ->  ( x  e.  A  |->  C )  e. 
<_O(1) ) )
531, 52mpd 15 1  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793   E.wrex 2794    C_ wss 3461   ifcif 3926   class class class wbr 4437    |-> cmpt 4495   dom cdm 4989   RRcr 9494    <_ cle 9632   <_O(1)clo1 13292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-pre-lttri 9569  ax-pre-lttrn 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-po 4790  df-so 4791  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-er 7313  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-ico 11546  df-lo1 13296
This theorem is referenced by:  o1le  13457  vmalogdivsum2  23701  pntrlog2bndlem1  23740  pntrlog2bndlem5  23744
  Copyright terms: Public domain W3C validator