MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bddrp Structured version   Unicode version

Theorem lo1bddrp 13404
Description: Refine o1bdd2 13420 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016.)
Hypotheses
Ref Expression
lo1bdd2.1  |-  ( ph  ->  A  C_  RR )
lo1bdd2.2  |-  ( ph  ->  C  e.  RR )
lo1bdd2.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
lo1bdd2.4  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_O(1) )
lo1bdd2.5  |-  ( (
ph  /\  ( y  e.  RR  /\  C  <_ 
y ) )  ->  M  e.  RR )
lo1bdd2.6  |-  ( ( ( ph  /\  x  e.  A )  /\  (
( y  e.  RR  /\  C  <_  y )  /\  x  <  y ) )  ->  B  <_  M )
Assertion
Ref Expression
lo1bddrp  |-  ( ph  ->  E. m  e.  RR+  A. x  e.  A  B  <_  m )
Distinct variable groups:    x, m, y, A    B, m, y   
x, C, y    ph, x, y    m, M, x
Allowed substitution hints:    ph( m)    B( x)    C( m)    M( y)

Proof of Theorem lo1bddrp
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 lo1bdd2.1 . . 3  |-  ( ph  ->  A  C_  RR )
2 lo1bdd2.2 . . 3  |-  ( ph  ->  C  e.  RR )
3 lo1bdd2.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
4 lo1bdd2.4 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_O(1) )
5 lo1bdd2.5 . . 3  |-  ( (
ph  /\  ( y  e.  RR  /\  C  <_ 
y ) )  ->  M  e.  RR )
6 lo1bdd2.6 . . 3  |-  ( ( ( ph  /\  x  e.  A )  /\  (
( y  e.  RR  /\  C  <_  y )  /\  x  <  y ) )  ->  B  <_  M )
71, 2, 3, 4, 5, 6lo1bdd2 13403 . 2  |-  ( ph  ->  E. n  e.  RR  A. x  e.  A  B  <_  n )
8 simpr 459 . . . . . . 7  |-  ( (
ph  /\  n  e.  RR )  ->  n  e.  RR )
98recnd 9572 . . . . . 6  |-  ( (
ph  /\  n  e.  RR )  ->  n  e.  CC )
109abscld 13323 . . . . 5  |-  ( (
ph  /\  n  e.  RR )  ->  ( abs `  n )  e.  RR )
119absge0d 13331 . . . . 5  |-  ( (
ph  /\  n  e.  RR )  ->  0  <_ 
( abs `  n
) )
1210, 11ge0p1rpd 11248 . . . 4  |-  ( (
ph  /\  n  e.  RR )  ->  ( ( abs `  n )  +  1 )  e.  RR+ )
13 simplr 754 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  n  e.  RR )
1410adantr 463 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  ( abs `  n )  e.  RR )
15 peano2re 9707 . . . . . . . 8  |-  ( ( abs `  n )  e.  RR  ->  (
( abs `  n
)  +  1 )  e.  RR )
1614, 15syl 17 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  (
( abs `  n
)  +  1 )  e.  RR )
1713leabsd 13302 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  n  <_  ( abs `  n
) )
1814lep1d 10437 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  ( abs `  n )  <_ 
( ( abs `  n
)  +  1 ) )
1913, 14, 16, 17, 18letrd 9693 . . . . . 6  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  n  <_  ( ( abs `  n
)  +  1 ) )
203adantlr 713 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  B  e.  RR )
21 letr 9629 . . . . . . 7  |-  ( ( B  e.  RR  /\  n  e.  RR  /\  (
( abs `  n
)  +  1 )  e.  RR )  -> 
( ( B  <_  n  /\  n  <_  (
( abs `  n
)  +  1 ) )  ->  B  <_  ( ( abs `  n
)  +  1 ) ) )
2220, 13, 16, 21syl3anc 1230 . . . . . 6  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  (
( B  <_  n  /\  n  <_  ( ( abs `  n )  +  1 ) )  ->  B  <_  (
( abs `  n
)  +  1 ) ) )
2319, 22mpan2d 672 . . . . 5  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  ( B  <_  n  ->  B  <_  ( ( abs `  n
)  +  1 ) ) )
2423ralimdva 2811 . . . 4  |-  ( (
ph  /\  n  e.  RR )  ->  ( A. x  e.  A  B  <_  n  ->  A. x  e.  A  B  <_  ( ( abs `  n
)  +  1 ) ) )
25 breq2 4398 . . . . . 6  |-  ( m  =  ( ( abs `  n )  +  1 )  ->  ( B  <_  m  <->  B  <_  ( ( abs `  n )  +  1 ) ) )
2625ralbidv 2842 . . . . 5  |-  ( m  =  ( ( abs `  n )  +  1 )  ->  ( A. x  e.  A  B  <_  m  <->  A. x  e.  A  B  <_  ( ( abs `  n )  +  1 ) ) )
2726rspcev 3159 . . . 4  |-  ( ( ( ( abs `  n
)  +  1 )  e.  RR+  /\  A. x  e.  A  B  <_  ( ( abs `  n
)  +  1 ) )  ->  E. m  e.  RR+  A. x  e.  A  B  <_  m
)
2812, 24, 27syl6an 543 . . 3  |-  ( (
ph  /\  n  e.  RR )  ->  ( A. x  e.  A  B  <_  n  ->  E. m  e.  RR+  A. x  e.  A  B  <_  m
) )
2928rexlimdva 2895 . 2  |-  ( ph  ->  ( E. n  e.  RR  A. x  e.  A  B  <_  n  ->  E. m  e.  RR+  A. x  e.  A  B  <_  m ) )
307, 29mpd 15 1  |-  ( ph  ->  E. m  e.  RR+  A. x  e.  A  B  <_  m )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753   E.wrex 2754    C_ wss 3413   class class class wbr 4394    |-> cmpt 4452   ` cfv 5525  (class class class)co 6234   RRcr 9441   1c1 9443    + caddc 9445    < clt 9578    <_ cle 9579   RR+crp 11183   abscabs 13123   <_O(1)clo1 13366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519  ax-pre-sup 9520
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-om 6639  df-2nd 6739  df-recs 6999  df-rdg 7033  df-er 7268  df-pm 7380  df-en 7475  df-dom 7476  df-sdom 7477  df-sup 7855  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-div 10168  df-nn 10497  df-2 10555  df-3 10556  df-n0 10757  df-z 10826  df-uz 11046  df-rp 11184  df-ico 11506  df-seq 12062  df-exp 12121  df-cj 12988  df-re 12989  df-im 12990  df-sqrt 13124  df-abs 13125  df-lo1 13370
This theorem is referenced by:  o1bddrp  13421  chpo1ubb  23939  pntrlog2bnd  24042
  Copyright terms: Public domain W3C validator