MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1add Structured version   Unicode version

Theorem lo1add 13412
Description: The sum of two eventually upper bounded functions is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
o1add2.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
lo1add.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_O(1) )
lo1add.4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_O(1) )
Assertion
Ref Expression
lo1add  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  <_O(1) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem lo1add
Dummy variables  m  c  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1add.3 . 2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  <_O(1) )
2 lo1add.4 . 2  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  <_O(1) )
3 reeanv 3029 . . . 4  |-  ( E. m  e.  RR  E. n  e.  RR  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m )  /\  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  C  <_  n ) )  <-> 
( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) ) )
4 o1add2.1 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
54ralrimiva 2878 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  B  e.  V )
6 dmmptg 5504 . . . . . . . . . 10  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
75, 6syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
8 lo1dm 13305 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  e.  <_O(1)  ->  dom  ( x  e.  A  |->  B )  C_  RR )
91, 8syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  C_  RR )
107, 9eqsstr3d 3539 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
1110adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  ->  A  C_  RR )
12 rexanre 13142 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( B  <_  m  /\  C  <_  n ) )  <-> 
( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) ) ) )
1311, 12syl 16 . . . . . 6  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  C  <_  n
) )  <->  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m )  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) ) ) )
14 readdcl 9575 . . . . . . . . 9  |-  ( ( m  e.  RR  /\  n  e.  RR )  ->  ( m  +  n
)  e.  RR )
1514adantl 466 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( m  +  n
)  e.  RR )
164, 1lo1mptrcl 13407 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
1716adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  B  e.  RR )
18 o1add2.2 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
1918, 2lo1mptrcl 13407 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
2019adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  C  e.  RR )
21 simplrl 759 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  m  e.  RR )
22 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  n  e.  RR )
23 le2add 10034 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  C  e.  RR )  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( ( B  <_  m  /\  C  <_  n
)  ->  ( B  +  C )  <_  (
m  +  n ) ) )
2417, 20, 21, 22, 23syl22anc 1229 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  (
( B  <_  m  /\  C  <_  n )  ->  ( B  +  C )  <_  (
m  +  n ) ) )
2524imim2d 52 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  RR  /\  n  e.  RR )
)  /\  x  e.  A )  ->  (
( c  <_  x  ->  ( B  <_  m  /\  C  <_  n ) )  ->  ( c  <_  x  ->  ( B  +  C )  <_  (
m  +  n ) ) ) )
2625ralimdva 2872 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  C  <_  n
) )  ->  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  (
m  +  n ) ) ) )
27 breq2 4451 . . . . . . . . . . 11  |-  ( p  =  ( m  +  n )  ->  (
( B  +  C
)  <_  p  <->  ( B  +  C )  <_  (
m  +  n ) ) )
2827imbi2d 316 . . . . . . . . . 10  |-  ( p  =  ( m  +  n )  ->  (
( c  <_  x  ->  ( B  +  C
)  <_  p )  <->  ( c  <_  x  ->  ( B  +  C )  <_  ( m  +  n ) ) ) )
2928ralbidv 2903 . . . . . . . . 9  |-  ( p  =  ( m  +  n )  ->  ( A. x  e.  A  ( c  <_  x  ->  ( B  +  C
)  <_  p )  <->  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  ( m  +  n ) ) ) )
3029rspcev 3214 . . . . . . . 8  |-  ( ( ( m  +  n
)  e.  RR  /\  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  ( m  +  n ) ) )  ->  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  p ) )
3115, 26, 30syl6an 545 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  C  <_  n
) )  ->  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  p
) ) )
3231reximdv 2937 . . . . . 6  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  <_  m  /\  C  <_  n
) )  ->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  p
) ) )
3313, 32sylbird 235 . . . . 5  |-  ( (
ph  /\  ( m  e.  RR  /\  n  e.  RR ) )  -> 
( ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) )  ->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  p
) ) )
3433rexlimdvva 2962 . . . 4  |-  ( ph  ->  ( E. m  e.  RR  E. n  e.  RR  ( E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) )  ->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  p
) ) )
353, 34syl5bir 218 . . 3  |-  ( ph  ->  ( ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) )  ->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  ( c  <_  x  ->  ( B  +  C )  <_  p
) ) )
3610, 16ello1mpt 13307 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_O(1)  <->  E. c  e.  RR  E. m  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  m ) ) )
37 rexcom 3023 . . . . 5  |-  ( E. c  e.  RR  E. m  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m )  <->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  m ) )
3836, 37syl6bb 261 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. 
<_O(1)  <->  E. m  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  B  <_  m ) ) )
3910, 19ello1mpt 13307 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. 
<_O(1)  <->  E. c  e.  RR  E. n  e.  RR  A. x  e.  A  (
c  <_  x  ->  C  <_  n ) ) )
40 rexcom 3023 . . . . 5  |-  ( E. c  e.  RR  E. n  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n )  <->  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  C  <_  n ) )
4139, 40syl6bb 261 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e. 
<_O(1)  <->  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  (
c  <_  x  ->  C  <_  n ) ) )
4238, 41anbi12d 710 . . 3  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e.  <_O(1)  /\  ( x  e.  A  |->  C )  e.  <_O(1) )  <->  ( E. m  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  B  <_  m
)  /\  E. n  e.  RR  E. c  e.  RR  A. x  e.  A  ( c  <_  x  ->  C  <_  n
) ) ) )
4316, 19readdcld 9623 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  RR )
4410, 43ello1mpt 13307 . . 3  |-  ( ph  ->  ( ( x  e.  A  |->  ( B  +  C ) )  e. 
<_O(1)  <->  E. c  e.  RR  E. p  e.  RR  A. x  e.  A  (
c  <_  x  ->  ( B  +  C )  <_  p ) ) )
4535, 42, 443imtr4d 268 . 2  |-  ( ph  ->  ( ( ( x  e.  A  |->  B )  e.  <_O(1)  /\  ( x  e.  A  |->  C )  e.  <_O(1) )  ->  (
x  e.  A  |->  ( B  +  C ) )  e.  <_O(1) ) )
461, 2, 45mp2and 679 1  |-  ( ph  ->  ( x  e.  A  |->  ( B  +  C
) )  e.  <_O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999  (class class class)co 6284   RRcr 9491    + caddc 9495    <_ cle 9629   <_O(1)clo1 13273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-er 7311  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-ico 11535  df-lo1 13277
This theorem is referenced by:  lo1sub  13416  pntrlog2bndlem4  23521  pntrlog2bndlem5  23522  pntrlog2bndlem6  23524
  Copyright terms: Public domain W3C validator