Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnrrng Structured version   Unicode version

Theorem lnrrng 29466
Description: Left-Noetherian rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
lnrrng  |-  ( A  e. LNoeR  ->  A  e.  Ring )

Proof of Theorem lnrrng
StepHypRef Expression
1 islnr 29465 . 2  |-  ( A  e. LNoeR 
<->  ( A  e.  Ring  /\  (ringLMod `  A )  e. LNoeM ) )
21simplbi 460 1  |-  ( A  e. LNoeR  ->  A  e.  Ring )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1756   ` cfv 5417   Ringcrg 16644  ringLModcrglmod 17249  LNoeMclnm 29426  LNoeRclnr 29463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-rex 2720  df-rab 2723  df-v 2973  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-iota 5380  df-fv 5425  df-lnr 29464
This theorem is referenced by:  lnr2i  29470  hbtlem6  29483  hbt  29484
  Copyright terms: Public domain W3C validator