Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnrfrlm Structured version   Unicode version

Theorem lnrfrlm 31308
Description: Finite-dimensional free modules over a Noetherian ring are Noetherian. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypothesis
Ref Expression
lnrfrlm.y  |-  Y  =  ( R freeLMod  I )
Assertion
Ref Expression
lnrfrlm  |-  ( ( R  e. LNoeR  /\  I  e. 
Fin )  ->  Y  e. LNoeM )

Proof of Theorem lnrfrlm
StepHypRef Expression
1 lnrfrlm.y . . 3  |-  Y  =  ( R freeLMod  I )
21frlmpwsfi 18956 . 2  |-  ( ( R  e. LNoeR  /\  I  e. 
Fin )  ->  Y  =  ( (ringLMod `  R
)  ^s  I ) )
3 lnrlnm 31303 . . 3  |-  ( R  e. LNoeR  ->  (ringLMod `  R )  e. LNoeM )
4 eqid 2454 . . . 4  |-  ( (ringLMod `  R )  ^s  I )  =  ( (ringLMod `  R
)  ^s  I )
54pwslnm 31279 . . 3  |-  ( ( (ringLMod `  R )  e. LNoeM  /\  I  e.  Fin )  ->  ( (ringLMod `  R
)  ^s  I )  e. LNoeM )
63, 5sylan 469 . 2  |-  ( ( R  e. LNoeR  /\  I  e. 
Fin )  ->  (
(ringLMod `  R )  ^s  I
)  e. LNoeM )
72, 6eqeltrd 2542 1  |-  ( ( R  e. LNoeR  /\  I  e. 
Fin )  ->  Y  e. LNoeM )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   ` cfv 5570  (class class class)co 6270   Fincfn 7509    ^s cpws 14936  ringLModcrglmod 18010   freeLMod cfrlm 18950  LNoeMclnm 31260  LNoeRclnr 31299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-fz 11676  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-hom 14808  df-cco 14809  df-0g 14931  df-prds 14937  df-pws 14939  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-mhm 16165  df-submnd 16166  df-grp 16256  df-minusg 16257  df-sbg 16258  df-subg 16397  df-ghm 16464  df-cntz 16554  df-lsm 16855  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-lmod 17709  df-lss 17774  df-lsp 17813  df-lmhm 17863  df-lmim 17864  df-lmic 17865  df-sra 18013  df-rgmod 18014  df-dsmm 18936  df-frlm 18951  df-lfig 31253  df-lnm 31261  df-lnr 31300
This theorem is referenced by:  lnrfg  31309
  Copyright terms: Public domain W3C validator