HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopmuli Structured version   Unicode version

Theorem lnopmuli 25388
Description: Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1  |-  T  e. 
LinOp
Assertion
Ref Expression
lnopmuli  |-  ( ( A  e.  CC  /\  B  e.  ~H )  ->  ( T `  ( A  .h  B )
)  =  ( A  .h  ( T `  B ) ) )

Proof of Theorem lnopmuli
StepHypRef Expression
1 lnopl.1 . 2  |-  T  e. 
LinOp
2 lnopmul 25383 . 2  |-  ( ( T  e.  LinOp  /\  A  e.  CC  /\  B  e. 
~H )  ->  ( T `  ( A  .h  B ) )  =  ( A  .h  ( T `  B )
) )
31, 2mp3an1 1301 1  |-  ( ( A  e.  CC  /\  B  e.  ~H )  ->  ( T `  ( A  .h  B )
)  =  ( A  .h  ( T `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   ` cfv 5430  (class class class)co 6103   CCcc 9292   ~Hchil 24333    .h csm 24335   LinOpclo 24361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-hilex 24413  ax-hfvadd 24414  ax-hvass 24416  ax-hv0cl 24417  ax-hvaddid 24418  ax-hfvmul 24419  ax-hvmulid 24420  ax-hvdistr2 24423  ax-hvmul0 24424
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-po 4653  df-so 4654  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-er 7113  df-map 7228  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-ltxr 9435  df-sub 9609  df-neg 9610  df-hvsub 24385  df-lnop 25257
This theorem is referenced by:  lnopaddmuli  25389  lnopsubmuli  25391  lnopmulsubi  25392  nmlnop0iALT  25411  lnophsi  25417  lnophmlem2  25433  nmbdoplbi  25440  nmcopexi  25443  nmcoplbi  25444  imaelshi  25474  cnlnadjlem2  25484  nmopcoi  25511
  Copyright terms: Public domain W3C validator