HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopmi Structured version   Unicode version

Theorem lnopmi 26595
Description: The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopm.1  |-  T  e. 
LinOp
Assertion
Ref Expression
lnopmi  |-  ( A  e.  CC  ->  ( A  .op  T )  e. 
LinOp )

Proof of Theorem lnopmi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopm.1 . . . 4  |-  T  e. 
LinOp
21lnopfi 26564 . . 3  |-  T : ~H
--> ~H
3 homulcl 26354 . . 3  |-  ( ( A  e.  CC  /\  T : ~H --> ~H )  ->  ( A  .op  T
) : ~H --> ~H )
42, 3mpan2 671 . 2  |-  ( A  e.  CC  ->  ( A  .op  T ) : ~H --> ~H )
5 hvmulcl 25606 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
6 hvaddcl 25605 . . . . . . . 8  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z
)  e.  ~H )
75, 6sylan 471 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
8 homval 26336 . . . . . . . 8  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  ( ( x  .h  y )  +h  z
)  e.  ~H )  ->  ( ( A  .op  T ) `  ( ( x  .h  y )  +h  z ) )  =  ( A  .h  ( T `  ( ( x  .h  y )  +h  z ) ) ) )
92, 8mp3an2 1312 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( x  .h  y )  +h  z
)  e.  ~H )  ->  ( ( A  .op  T ) `  ( ( x  .h  y )  +h  z ) )  =  ( A  .h  ( T `  ( ( x  .h  y )  +h  z ) ) ) )
107, 9sylan2 474 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( A  .op  T ) `  ( ( x  .h  y )  +h  z ) )  =  ( A  .h  ( T `  ( ( x  .h  y )  +h  z ) ) ) )
11 id 22 . . . . . . . . 9  |-  ( A  e.  CC  ->  A  e.  CC )
122ffvelrni 6018 . . . . . . . . . 10  |-  ( y  e.  ~H  ->  ( T `  y )  e.  ~H )
13 hvmulcl 25606 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  ( T `  y )  e.  ~H )  -> 
( x  .h  ( T `  y )
)  e.  ~H )
1412, 13sylan2 474 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  ( T `  y )
)  e.  ~H )
152ffvelrni 6018 . . . . . . . . 9  |-  ( z  e.  ~H  ->  ( T `  z )  e.  ~H )
16 ax-hvdistr1 25601 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  .h  ( T `  y )
)  e.  ~H  /\  ( T `  z )  e.  ~H )  -> 
( A  .h  (
( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) )  =  ( ( A  .h  ( x  .h  ( T `  y ) ) )  +h  ( A  .h  ( T `  z ) ) ) )
1711, 14, 15, 16syl3an 1270 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( A  .h  ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
) )  =  ( ( A  .h  (
x  .h  ( T `
 y ) ) )  +h  ( A  .h  ( T `  z ) ) ) )
18173expb 1197 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( A  .h  (
( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) )  =  ( ( A  .h  ( x  .h  ( T `  y ) ) )  +h  ( A  .h  ( T `  z ) ) ) )
191lnopli 26563 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  ( T `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) )
20193expa 1196 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) )
2120oveq2d 6298 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( A  .h  ( T `  ( ( x  .h  y )  +h  z ) ) )  =  ( A  .h  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
2221adantl 466 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( A  .h  ( T `  ( (
x  .h  y )  +h  z ) ) )  =  ( A  .h  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
23 homval 26336 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  y  e.  ~H )  ->  ( ( A  .op  T ) `  y )  =  ( A  .h  ( T `  y ) ) )
242, 23mp3an2 1312 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ~H )  ->  ( ( A  .op  T ) `  y )  =  ( A  .h  ( T `  y ) ) )
2524adantrl 715 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( ( A  .op  T ) `  y )  =  ( A  .h  ( T `
 y ) ) )
2625oveq2d 6298 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( x  .h  ( ( A  .op  T ) `  y ) )  =  ( x  .h  ( A  .h  ( T `  y ) ) ) )
27 hvmulcom 25636 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  ( T `  y )  e.  ~H )  ->  ( A  .h  ( x  .h  ( T `  y
) ) )  =  ( x  .h  ( A  .h  ( T `  y ) ) ) )
2812, 27syl3an3 1263 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  y  e.  ~H )  ->  ( A  .h  ( x  .h  ( T `  y
) ) )  =  ( x  .h  ( A  .h  ( T `  y ) ) ) )
29283expb 1197 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( A  .h  ( x  .h  ( T `  y )
) )  =  ( x  .h  ( A  .h  ( T `  y ) ) ) )
3026, 29eqtr4d 2511 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( x  .h  ( ( A  .op  T ) `  y ) )  =  ( A  .h  ( x  .h  ( T `  y
) ) ) )
31 homval 26336 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  z  e.  ~H )  ->  ( ( A  .op  T ) `  z )  =  ( A  .h  ( T `  z ) ) )
322, 31mp3an2 1312 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  z  e.  ~H )  ->  ( ( A  .op  T ) `  z )  =  ( A  .h  ( T `  z ) ) )
3330, 32oveqan12d 6301 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  ( A  e.  CC  /\  z  e. 
~H ) )  -> 
( ( x  .h  ( ( A  .op  T ) `  y ) )  +h  ( ( A  .op  T ) `
 z ) )  =  ( ( A  .h  ( x  .h  ( T `  y
) ) )  +h  ( A  .h  ( T `  z )
) ) )
3433anandis 828 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( x  .h  ( ( A  .op  T ) `  y ) )  +h  ( ( A  .op  T ) `
 z ) )  =  ( ( A  .h  ( x  .h  ( T `  y
) ) )  +h  ( A  .h  ( T `  z )
) ) )
3518, 22, 343eqtr4rd 2519 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( x  .h  ( ( A  .op  T ) `  y ) )  +h  ( ( A  .op  T ) `
 z ) )  =  ( A  .h  ( T `  ( ( x  .h  y )  +h  z ) ) ) )
3610, 35eqtr4d 2511 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( ( A  .op  T ) `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( A 
.op  T ) `  y ) )  +h  ( ( A  .op  T ) `  z ) ) )
3736exp32 605 . . . 4  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  y  e.  ~H )  ->  ( z  e.  ~H  ->  ( ( A  .op  T ) `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( A 
.op  T ) `  y ) )  +h  ( ( A  .op  T ) `  z ) ) ) ) )
3837ralrimdv 2880 . . 3  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  y  e.  ~H )  ->  A. z  e.  ~H  ( ( A  .op  T ) `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( A 
.op  T ) `  y ) )  +h  ( ( A  .op  T ) `  z ) ) ) )
3938ralrimivv 2884 . 2  |-  ( A  e.  CC  ->  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( ( A  .op  T ) `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( A 
.op  T ) `  y ) )  +h  ( ( A  .op  T ) `  z ) ) )
40 ellnop 26453 . 2  |-  ( ( A  .op  T )  e.  LinOp 
<->  ( ( A  .op  T ) : ~H --> ~H  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( ( A 
.op  T ) `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  (
( A  .op  T
) `  y )
)  +h  ( ( A  .op  T ) `
 z ) ) ) )
414, 39, 40sylanbrc 664 1  |-  ( A  e.  CC  ->  ( A  .op  T )  e. 
LinOp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   -->wf 5582   ` cfv 5586  (class class class)co 6282   CCcc 9486   ~Hchil 25512    +h cva 25513    .h csm 25514    .op chot 25532   LinOpclo 25540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-mulcom 9552  ax-hilex 25592  ax-hfvadd 25593  ax-hfvmul 25598  ax-hvmulass 25600  ax-hvdistr1 25601
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-map 7419  df-homul 26326  df-lnop 26436
This theorem is referenced by:  lnophdi  26597  bdophmi  26627
  Copyright terms: Public domain W3C validator