HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophsi Structured version   Unicode version

Theorem lnophsi 25550
Description: The sum of two linear operators is linear. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopco.1  |-  S  e. 
LinOp
lnopco.2  |-  T  e. 
LinOp
Assertion
Ref Expression
lnophsi  |-  ( S 
+op  T )  e. 
LinOp

Proof of Theorem lnophsi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopco.1 . . . 4  |-  S  e. 
LinOp
21lnopfi 25518 . . 3  |-  S : ~H
--> ~H
3 lnopco.2 . . . 4  |-  T  e. 
LinOp
43lnopfi 25518 . . 3  |-  T : ~H
--> ~H
52, 4hoaddcli 25317 . 2  |-  ( S 
+op  T ) : ~H --> ~H
6 hvmulcl 24560 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
71lnopaddi 25520 . . . . . . . 8  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( S `  (
( x  .h  y
)  +h  z ) )  =  ( ( S `  ( x  .h  y ) )  +h  ( S `  z ) ) )
83lnopaddi 25520 . . . . . . . 8  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( T `  (
( x  .h  y
)  +h  z ) )  =  ( ( T `  ( x  .h  y ) )  +h  ( T `  z ) ) )
97, 8oveq12d 6211 . . . . . . 7  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( S `  ( ( x  .h  y )  +h  z
) )  +h  ( T `  ( (
x  .h  y )  +h  z ) ) )  =  ( ( ( S `  (
x  .h  y ) )  +h  ( S `
 z ) )  +h  ( ( T `
 ( x  .h  y ) )  +h  ( T `  z
) ) ) )
106, 9sylan 471 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( S `
 ( ( x  .h  y )  +h  z ) )  +h  ( T `  (
( x  .h  y
)  +h  z ) ) )  =  ( ( ( S `  ( x  .h  y
) )  +h  ( S `  z )
)  +h  ( ( T `  ( x  .h  y ) )  +h  ( T `  z ) ) ) )
112ffvelrni 5944 . . . . . . . . 9  |-  ( ( x  .h  y )  e.  ~H  ->  ( S `  ( x  .h  y ) )  e. 
~H )
126, 11syl 16 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( S `  (
x  .h  y ) )  e.  ~H )
132ffvelrni 5944 . . . . . . . 8  |-  ( z  e.  ~H  ->  ( S `  z )  e.  ~H )
1412, 13anim12i 566 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( S `
 ( x  .h  y ) )  e. 
~H  /\  ( S `  z )  e.  ~H ) )
154ffvelrni 5944 . . . . . . . . 9  |-  ( ( x  .h  y )  e.  ~H  ->  ( T `  ( x  .h  y ) )  e. 
~H )
166, 15syl 16 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( T `  (
x  .h  y ) )  e.  ~H )
174ffvelrni 5944 . . . . . . . 8  |-  ( z  e.  ~H  ->  ( T `  z )  e.  ~H )
1816, 17anim12i 566 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( T `
 ( x  .h  y ) )  e. 
~H  /\  ( T `  z )  e.  ~H ) )
19 hvadd4 24583 . . . . . . 7  |-  ( ( ( ( S `  ( x  .h  y
) )  e.  ~H  /\  ( S `  z
)  e.  ~H )  /\  ( ( T `  ( x  .h  y
) )  e.  ~H  /\  ( T `  z
)  e.  ~H )
)  ->  ( (
( S `  (
x  .h  y ) )  +h  ( S `
 z ) )  +h  ( ( T `
 ( x  .h  y ) )  +h  ( T `  z
) ) )  =  ( ( ( S `
 ( x  .h  y ) )  +h  ( T `  (
x  .h  y ) ) )  +h  (
( S `  z
)  +h  ( T `
 z ) ) ) )
2014, 18, 19syl2anc 661 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( ( S `  ( x  .h  y ) )  +h  ( S `  z ) )  +h  ( ( T `  ( x  .h  y
) )  +h  ( T `  z )
) )  =  ( ( ( S `  ( x  .h  y
) )  +h  ( T `  ( x  .h  y ) ) )  +h  ( ( S `
 z )  +h  ( T `  z
) ) ) )
2110, 20eqtrd 2492 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( S `
 ( ( x  .h  y )  +h  z ) )  +h  ( T `  (
( x  .h  y
)  +h  z ) ) )  =  ( ( ( S `  ( x  .h  y
) )  +h  ( T `  ( x  .h  y ) ) )  +h  ( ( S `
 z )  +h  ( T `  z
) ) ) )
22 hvaddcl 24559 . . . . . . 7  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z
)  e.  ~H )
236, 22sylan 471 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
24 hosval 25289 . . . . . . 7  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H  /\  ( ( x  .h  y )  +h  z
)  e.  ~H )  ->  ( ( S  +op  T ) `  ( ( x  .h  y )  +h  z ) )  =  ( ( S `
 ( ( x  .h  y )  +h  z ) )  +h  ( T `  (
( x  .h  y
)  +h  z ) ) ) )
252, 4, 24mp3an12 1305 . . . . . 6  |-  ( ( ( x  .h  y
)  +h  z )  e.  ~H  ->  (
( S  +op  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( S `
 ( ( x  .h  y )  +h  z ) )  +h  ( T `  (
( x  .h  y
)  +h  z ) ) ) )
2623, 25syl 16 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( S 
+op  T ) `  ( ( x  .h  y )  +h  z
) )  =  ( ( S `  (
( x  .h  y
)  +h  z ) )  +h  ( T `
 ( ( x  .h  y )  +h  z ) ) ) )
272ffvelrni 5944 . . . . . . . . 9  |-  ( y  e.  ~H  ->  ( S `  y )  e.  ~H )
284ffvelrni 5944 . . . . . . . . 9  |-  ( y  e.  ~H  ->  ( T `  y )  e.  ~H )
2927, 28jca 532 . . . . . . . 8  |-  ( y  e.  ~H  ->  (
( S `  y
)  e.  ~H  /\  ( T `  y )  e.  ~H ) )
30 ax-hvdistr1 24555 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  ( S `  y )  e.  ~H  /\  ( T `  y )  e.  ~H )  ->  (
x  .h  ( ( S `  y )  +h  ( T `  y ) ) )  =  ( ( x  .h  ( S `  y ) )  +h  ( x  .h  ( T `  y )
) ) )
31303expb 1189 . . . . . . . 8  |-  ( ( x  e.  CC  /\  ( ( S `  y )  e.  ~H  /\  ( T `  y
)  e.  ~H )
)  ->  ( x  .h  ( ( S `  y )  +h  ( T `  y )
) )  =  ( ( x  .h  ( S `  y )
)  +h  ( x  .h  ( T `  y ) ) ) )
3229, 31sylan2 474 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  (
( S `  y
)  +h  ( T `
 y ) ) )  =  ( ( x  .h  ( S `
 y ) )  +h  ( x  .h  ( T `  y
) ) ) )
33 hosval 25289 . . . . . . . . . 10  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H  /\  y  e.  ~H )  ->  ( ( S  +op  T ) `  y )  =  ( ( S `
 y )  +h  ( T `  y
) ) )
342, 4, 33mp3an12 1305 . . . . . . . . 9  |-  ( y  e.  ~H  ->  (
( S  +op  T
) `  y )  =  ( ( S `
 y )  +h  ( T `  y
) ) )
3534oveq2d 6209 . . . . . . . 8  |-  ( y  e.  ~H  ->  (
x  .h  ( ( S  +op  T ) `
 y ) )  =  ( x  .h  ( ( S `  y )  +h  ( T `  y )
) ) )
3635adantl 466 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  (
( S  +op  T
) `  y )
)  =  ( x  .h  ( ( S `
 y )  +h  ( T `  y
) ) ) )
371lnopmuli 25521 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( S `  (
x  .h  y ) )  =  ( x  .h  ( S `  y ) ) )
383lnopmuli 25521 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( T `  (
x  .h  y ) )  =  ( x  .h  ( T `  y ) ) )
3937, 38oveq12d 6211 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( ( S `  ( x  .h  y
) )  +h  ( T `  ( x  .h  y ) ) )  =  ( ( x  .h  ( S `  y ) )  +h  ( x  .h  ( T `  y )
) ) )
4032, 36, 393eqtr4d 2502 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  (
( S  +op  T
) `  y )
)  =  ( ( S `  ( x  .h  y ) )  +h  ( T `  ( x  .h  y
) ) ) )
41 hosval 25289 . . . . . . 7  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H  /\  z  e.  ~H )  ->  ( ( S  +op  T ) `  z )  =  ( ( S `
 z )  +h  ( T `  z
) ) )
422, 4, 41mp3an12 1305 . . . . . 6  |-  ( z  e.  ~H  ->  (
( S  +op  T
) `  z )  =  ( ( S `
 z )  +h  ( T `  z
) ) )
4340, 42oveqan12d 6212 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  ( ( S 
+op  T ) `  y ) )  +h  ( ( S  +op  T ) `  z ) )  =  ( ( ( S `  (
x  .h  y ) )  +h  ( T `
 ( x  .h  y ) ) )  +h  ( ( S `
 z )  +h  ( T `  z
) ) ) )
4421, 26, 433eqtr4d 2502 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( S 
+op  T ) `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  (
( S  +op  T
) `  y )
)  +h  ( ( S  +op  T ) `
 z ) ) )
4544ralrimiva 2825 . . 3  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  A. z  e.  ~H  ( ( S  +op  T ) `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( S 
+op  T ) `  y ) )  +h  ( ( S  +op  T ) `  z ) ) )
4645rgen2 2911 . 2  |-  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( ( S  +op  T ) `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( S 
+op  T ) `  y ) )  +h  ( ( S  +op  T ) `  z ) )
47 ellnop 25407 . 2  |-  ( ( S  +op  T )  e.  LinOp 
<->  ( ( S  +op  T ) : ~H --> ~H  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( ( S 
+op  T ) `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  (
( S  +op  T
) `  y )
)  +h  ( ( S  +op  T ) `
 z ) ) ) )
485, 46, 47mpbir2an 911 1  |-  ( S 
+op  T )  e. 
LinOp
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   -->wf 5515   ` cfv 5519  (class class class)co 6193   CCcc 9384   ~Hchil 24466    +h cva 24467    .h csm 24468    +op chos 24485   LinOpclo 24494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-hilex 24546  ax-hfvadd 24547  ax-hvcom 24548  ax-hvass 24549  ax-hv0cl 24550  ax-hvaddid 24551  ax-hfvmul 24552  ax-hvmulid 24553  ax-hvdistr1 24555  ax-hvdistr2 24556  ax-hvmul0 24557
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-po 4742  df-so 4743  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-er 7204  df-map 7319  df-en 7414  df-dom 7415  df-sdom 7416  df-pnf 9524  df-mnf 9525  df-ltxr 9527  df-sub 9701  df-neg 9702  df-hvsub 24518  df-hosum 25279  df-lnop 25390
This theorem is referenced by:  lnophdi  25551  bdophsi  25645
  Copyright terms: Public domain W3C validator