Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophmlem1 Structured version   Unicode version

Theorem lnophmlem1 26708
 Description: Lemma for lnophmi 26710. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnophmlem.1
lnophmlem.2
lnophmlem.3
lnophmlem.4
Assertion
Ref Expression
lnophmlem1
Distinct variable groups:   ,   ,   ,

Proof of Theorem lnophmlem1
StepHypRef Expression
1 lnophmlem.1 . 2
2 lnophmlem.4 . 2
3 id 22 . . . . 5
4 fveq2 5866 . . . . 5
53, 4oveq12d 6303 . . . 4
65eleq1d 2536 . . 3
76rspcv 3210 . 2
81, 2, 7mp2 9 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1379   wcel 1767  wral 2814  cfv 5588  (class class class)co 6285  cr 9492  chil 25609   csp 25612  clo 25637 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-iota 5551  df-fv 5596  df-ov 6288 This theorem is referenced by:  lnophmlem2  26709
 Copyright terms: Public domain W3C validator