HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophm Unicode version

Theorem lnophm 22429
Description: A linear operator is Hermitian if  x  .ih  ( T `  x ) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnophm  |-  ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR )  ->  T  e.  HrmOp )
Distinct variable group:    x, T

Proof of Theorem lnophm
StepHypRef Expression
1 eleq1 2313 . 2  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( T  e.  HrmOp 
<->  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  e.  HrmOp ) )
2 eleq1 2313 . . . . . 6  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( T  e.  LinOp 
<->  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  e.  LinOp ) )
3 id 21 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
4 fveq2 5377 . . . . . . . . . 10  |-  ( x  =  y  ->  ( T `  x )  =  ( T `  y ) )
53, 4oveq12d 5728 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  .ih  ( T `  x ) )  =  ( y  .ih  ( T `  y )
) )
65eleq1d 2319 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  .ih  ( T `  x )
)  e.  RR  <->  ( y  .ih  ( T `  y
) )  e.  RR ) )
76cbvralv 2708 . . . . . . 7  |-  ( A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR  <->  A. y  e.  ~H  ( y  .ih  ( T `  y )
)  e.  RR )
8 fveq1 5376 . . . . . . . . . 10  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( T `  y )  =  ( if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)
98oveq2d 5726 . . . . . . . . 9  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( y  .ih  ( T `  y
) )  =  ( y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
) )
109eleq1d 2319 . . . . . . . 8  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( (
y  .ih  ( T `  y ) )  e.  RR  <->  ( y  .ih  ( if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) )
1110ralbidv 2527 . . . . . . 7  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( A. y  e.  ~H  (
y  .ih  ( T `  y ) )  e.  RR  <->  A. y  e.  ~H  ( y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) )
127, 11syl5bb 250 . . . . . 6  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR  <->  A. y  e.  ~H  ( y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) )
132, 12anbi12d 694 . . . . 5  |-  ( T  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR )  <->  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  e.  LinOp  /\  A. y  e.  ~H  (
y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) ) )
14 eleq1 2313 . . . . . 6  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( (  _I  |`  ~H )  e. 
LinOp 
<->  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  e.  LinOp ) )
15 fveq1 5376 . . . . . . . . 9  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( (  _I  |`  ~H ) `  y )  =  ( if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)
1615oveq2d 5726 . . . . . . . 8  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( y  .ih  ( (  _I  |`  ~H ) `  y ) )  =  ( y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
) )
1716eleq1d 2319 . . . . . . 7  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( (
y  .ih  ( (  _I  |`  ~H ) `  y ) )  e.  RR  <->  ( y  .ih  ( if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) )
1817ralbidv 2527 . . . . . 6  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( A. y  e.  ~H  (
y  .ih  ( (  _I  |`  ~H ) `  y ) )  e.  RR  <->  A. y  e.  ~H  ( y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) )
1914, 18anbi12d 694 . . . . 5  |-  ( (  _I  |`  ~H )  =  if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  ->  ( (
(  _I  |`  ~H )  e.  LinOp  /\  A. y  e.  ~H  ( y  .ih  ( (  _I  |`  ~H ) `  y ) )  e.  RR )  <->  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  e.  LinOp  /\  A. y  e.  ~H  (
y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR ) ) )
20 idlnop 22402 . . . . . 6  |-  (  _I  |`  ~H )  e.  LinOp
21 fvresi 5563 . . . . . . . . 9  |-  ( y  e.  ~H  ->  (
(  _I  |`  ~H ) `  y )  =  y )
2221oveq2d 5726 . . . . . . . 8  |-  ( y  e.  ~H  ->  (
y  .ih  ( (  _I  |`  ~H ) `  y ) )  =  ( y  .ih  y
) )
23 hiidrcl 21504 . . . . . . . 8  |-  ( y  e.  ~H  ->  (
y  .ih  y )  e.  RR )
2422, 23eqeltrd 2327 . . . . . . 7  |-  ( y  e.  ~H  ->  (
y  .ih  ( (  _I  |`  ~H ) `  y ) )  e.  RR )
2524rgen 2570 . . . . . 6  |-  A. y  e.  ~H  ( y  .ih  ( (  _I  |`  ~H ) `  y ) )  e.  RR
2620, 25pm3.2i 443 . . . . 5  |-  ( (  _I  |`  ~H )  e.  LinOp  /\  A. y  e.  ~H  ( y  .ih  ( (  _I  |`  ~H ) `  y ) )  e.  RR )
2713, 19, 26elimhyp 3518 . . . 4  |-  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
)  e.  LinOp  /\  A. y  e.  ~H  (
y  .ih  ( if ( ( T  e. 
LinOp  /\  A. x  e. 
~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR )
2827simpli 446 . . 3  |-  if ( ( T  e.  LinOp  /\ 
A. x  e.  ~H  ( x  .ih  ( T `
 x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H ) )  e. 
LinOp
2927simpri 450 . . 3  |-  A. y  e.  ~H  ( y  .ih  ( if ( ( T  e.  LinOp  /\  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H )
) `  y )
)  e.  RR
3028, 29lnophmi 22428 . 2  |-  if ( ( T  e.  LinOp  /\ 
A. x  e.  ~H  ( x  .ih  ( T `
 x ) )  e.  RR ) ,  T ,  (  _I  |`  ~H ) )  e. 
HrmOp
311, 30dedth 3511 1  |-  ( ( T  e.  LinOp  /\  A. x  e.  ~H  (
x  .ih  ( T `  x ) )  e.  RR )  ->  T  e.  HrmOp )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509   ifcif 3470    _I cid 4197    |` cres 4582   ` cfv 4592  (class class class)co 5710   RRcr 8616   ~Hchil 21329    .ih csp 21332   LinOpclo 21357   HrmOpcho 21360
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvmulass 21417  ax-hvdistr1 21418  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-2 9684  df-3 9685  df-4 9686  df-cj 11461  df-re 11462  df-im 11463  df-hvsub 21381  df-lnop 22251  df-unop 22253  df-hmop 22254
  Copyright terms: Public domain W3C validator