HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopeq0lem2 Structured version   Unicode version

Theorem lnopeq0lem2 26589
Description: Lemma for lnopeq0i 26590. (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopeq0.1  |-  T  e. 
LinOp
Assertion
Ref Expression
lnopeq0lem2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( T `  A )  .ih  B
)  =  ( ( ( ( ( T `
 ( A  +h  B ) )  .ih  ( A  +h  B
) )  -  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( A  +h  ( _i  .h  B
) ) )  .ih  ( A  +h  (
_i  .h  B )
) )  -  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) ) ) ) )  /  4
) )

Proof of Theorem lnopeq0lem2
StepHypRef Expression
1 fveq2 5859 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  A )  =  ( T `  if ( A  e.  ~H ,  A ,  0h )
) )
21oveq1d 6292 . . 3  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  A
)  .ih  B )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  B ) )
3 oveq1 6284 . . . . . . . 8  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  +h  B )  =  ( if ( A  e.  ~H ,  A ,  0h )  +h  B
) )
43fveq2d 5863 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  ( A  +h  B ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) ) )
54, 3oveq12d 6295 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  ( A  +h  B ) ) 
.ih  ( A  +h  B ) )  =  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) ) )
6 oveq1 6284 . . . . . . . 8  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  -h  B )  =  ( if ( A  e.  ~H ,  A ,  0h )  -h  B
) )
76fveq2d 5863 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  ( A  -h  B ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) ) )
87, 6oveq12d 6295 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) )  =  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) ) )
95, 8oveq12d 6295 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  ( A  +h  B
) )  .ih  ( A  +h  B ) )  -  ( ( T `
 ( A  -h  B ) )  .ih  ( A  -h  B
) ) )  =  ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) ) )
10 oveq1 6284 . . . . . . . . 9  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  +h  ( _i  .h  B ) )  =  ( if ( A  e.  ~H ,  A ,  0h )  +h  (
_i  .h  B )
) )
1110fveq2d 5863 . . . . . . . 8  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  ( A  +h  ( _i  .h  B
) ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) ) )
1211, 10oveq12d 6295 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  ( A  +h  ( _i  .h  B ) ) ) 
.ih  ( A  +h  ( _i  .h  B
) ) )  =  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) ) )
13 oveq1 6284 . . . . . . . . 9  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( A  -h  ( _i  .h  B ) )  =  ( if ( A  e.  ~H ,  A ,  0h )  -h  (
_i  .h  B )
) )
1413fveq2d 5863 . . . . . . . 8  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  ( T `  ( A  -h  ( _i  .h  B
) ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) )
1514, 13oveq12d 6295 . . . . . . 7  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) )  =  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) )
1612, 15oveq12d 6295 . . . . . 6  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  ( A  +h  (
_i  .h  B )
) )  .ih  ( A  +h  ( _i  .h  B ) ) )  -  ( ( T `
 ( A  -h  ( _i  .h  B
) ) )  .ih  ( A  -h  (
_i  .h  B )
) ) )  =  ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) ) ) )
1716oveq2d 6293 . . . . 5  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
_i  x.  ( (
( T `  ( A  +h  ( _i  .h  B ) ) ) 
.ih  ( A  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( A  -h  (
_i  .h  B )
) )  .ih  ( A  -h  ( _i  .h  B ) ) ) ) )  =  ( _i  x.  ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) ) ) ) )
189, 17oveq12d 6295 . . . 4  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( ( T `
 ( A  +h  B ) )  .ih  ( A  +h  B
) )  -  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( A  +h  ( _i  .h  B
) ) )  .ih  ( A  +h  (
_i  .h  B )
) )  -  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) ) ) ) )  =  ( ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) ) )
1918oveq1d 6292 . . 3  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( ( ( T `  ( A  +h  B ) ) 
.ih  ( A  +h  B ) )  -  ( ( T `  ( A  -h  B
) )  .ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `  ( A  +h  ( _i  .h  B ) ) ) 
.ih  ( A  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( A  -h  (
_i  .h  B )
) )  .ih  ( A  -h  ( _i  .h  B ) ) ) ) ) )  / 
4 )  =  ( ( ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) )  /  4
) )
202, 19eqeq12d 2484 . 2  |-  ( A  =  if ( A  e.  ~H ,  A ,  0h )  ->  (
( ( T `  A )  .ih  B
)  =  ( ( ( ( ( T `
 ( A  +h  B ) )  .ih  ( A  +h  B
) )  -  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( A  +h  ( _i  .h  B
) ) )  .ih  ( A  +h  (
_i  .h  B )
) )  -  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) ) ) ) )  /  4
)  <->  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  B )  =  ( ( ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) )  /  4
) ) )
21 oveq2 6285 . . 3  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )  =  ( ( T `
 if ( A  e.  ~H ,  A ,  0h ) )  .ih  if ( B  e.  ~H ,  B ,  0h )
) )
22 oveq2 6285 . . . . . . . 8  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  +h  B )  =  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )
2322fveq2d 5863 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) ) )
2423, 22oveq12d 6295 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  =  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) ) )
25 oveq2 6285 . . . . . . . 8  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  -h  B )  =  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) )
2625fveq2d 5863 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) ) )
2726, 25oveq12d 6295 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) )  =  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )
2824, 27oveq12d 6295 . . . . 5  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) ) )  =  ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) ) )
29 oveq2 6285 . . . . . . . . . 10  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
_i  .h  B )  =  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) )
3029oveq2d 6293 . . . . . . . . 9  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) )  =  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )
3130fveq2d 5863 . . . . . . . 8  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) )
3231, 30oveq12d 6295 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  =  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) ) )
3329oveq2d 6293 . . . . . . . . 9  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) )  =  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )
3433fveq2d 5863 . . . . . . . 8  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  =  ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) )
3534, 33oveq12d 6295 . . . . . . 7  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  =  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) ) )
3632, 35oveq12d 6295 . . . . . 6  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) )  =  ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  -  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) ) ) )
3736oveq2d 6293 . . . . 5  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
_i  x.  ( (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) ) ) )  =  ( _i  x.  ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  -  ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) ) ) ) )
3828, 37oveq12d 6295 . . . 4  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) )  =  ( ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) ) ) ) )
3938oveq1d 6292 . . 3  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) ) ) ) )  /  4
)  =  ( ( ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) ) ) )  /  4
) )
4021, 39eqeq12d 2484 . 2  |-  ( B  =  if ( B  e.  ~H ,  B ,  0h )  ->  (
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  B )  =  ( ( ( ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  B ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  B
) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  B )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  B
) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  B )
) ) ) ) )  /  4 )  <-> 
( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( B  e.  ~H ,  B ,  0h ) )  =  ( ( ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) ) ) )  /  4
) ) )
41 lnopeq0.1 . . 3  |-  T  e. 
LinOp
42 ifhvhv0 25603 . . 3  |-  if ( A  e.  ~H ,  A ,  0h )  e.  ~H
43 ifhvhv0 25603 . . 3  |-  if ( B  e.  ~H ,  B ,  0h )  e.  ~H
4441, 42, 43lnopeq0lem1 26588 . 2  |-  ( ( T `  if ( A  e.  ~H ,  A ,  0h )
)  .ih  if ( B  e.  ~H ,  B ,  0h ) )  =  ( ( ( ( ( T `  ( if ( A  e.  ~H ,  A ,  0h )  +h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  +h  if ( B  e.  ~H ,  B ,  0h )
) )  -  (
( T `  ( if ( A  e.  ~H ,  A ,  0h )  -h  if ( B  e. 
~H ,  B ,  0h ) ) )  .ih  ( if ( A  e. 
~H ,  A ,  0h )  -h  if ( B  e.  ~H ,  B ,  0h )
) ) )  +  ( _i  x.  (
( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  +h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  +h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) )  -  ( ( T `  ( if ( A  e. 
~H ,  A ,  0h )  -h  (
_i  .h  if ( B  e.  ~H ,  B ,  0h ) ) ) )  .ih  ( if ( A  e.  ~H ,  A ,  0h )  -h  ( _i  .h  if ( B  e.  ~H ,  B ,  0h )
) ) ) ) ) )  /  4
)
4520, 40, 44dedth2h 3987 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( T `  A )  .ih  B
)  =  ( ( ( ( ( T `
 ( A  +h  B ) )  .ih  ( A  +h  B
) )  -  (
( T `  ( A  -h  B ) ) 
.ih  ( A  -h  B ) ) )  +  ( _i  x.  ( ( ( T `
 ( A  +h  ( _i  .h  B
) ) )  .ih  ( A  +h  (
_i  .h  B )
) )  -  (
( T `  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( A  -h  ( _i  .h  B
) ) ) ) ) )  /  4
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   ifcif 3934   ` cfv 5581  (class class class)co 6277   _ici 9485    + caddc 9486    x. cmul 9488    - cmin 9796    / cdiv 10197   4c4 10578   ~Hchil 25500    +h cva 25501    .h csm 25502    .ih csp 25503   0hc0v 25505    -h cmv 25506   LinOpclo 25528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-hilex 25580  ax-hfvadd 25581  ax-hvass 25583  ax-hv0cl 25584  ax-hvaddid 25585  ax-hfvmul 25586  ax-hvmulid 25587  ax-hvdistr2 25590  ax-hvmul0 25591  ax-hfi 25660  ax-his1 25663  ax-his2 25664  ax-his3 25665
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-po 4795  df-so 4796  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-er 7303  df-map 7414  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-2 10585  df-3 10586  df-4 10587  df-cj 12884  df-re 12885  df-im 12886  df-hvsub 25552  df-lnop 26424
This theorem is referenced by:  lnopeq0i  26590
  Copyright terms: Public domain W3C validator