HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopaddmuli Structured version   Unicode version

Theorem lnopaddmuli 27186
Description: Sum/product property of a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1  |-  T  e. 
LinOp
Assertion
Ref Expression
lnopaddmuli  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( T `  ( B  +h  ( A  .h  C
) ) )  =  ( ( T `  B )  +h  ( A  .h  ( T `  C ) ) ) )

Proof of Theorem lnopaddmuli
StepHypRef Expression
1 hvmulcl 26225 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  ~H )  ->  ( A  .h  C
)  e.  ~H )
2 lnopl.1 . . . . . 6  |-  T  e. 
LinOp
32lnopaddi 27184 . . . . 5  |-  ( ( B  e.  ~H  /\  ( A  .h  C
)  e.  ~H )  ->  ( T `  ( B  +h  ( A  .h  C ) ) )  =  ( ( T `
 B )  +h  ( T `  ( A  .h  C )
) ) )
41, 3sylan2 472 . . . 4  |-  ( ( B  e.  ~H  /\  ( A  e.  CC  /\  C  e.  ~H )
)  ->  ( T `  ( B  +h  ( A  .h  C )
) )  =  ( ( T `  B
)  +h  ( T `
 ( A  .h  C ) ) ) )
543impb 1191 . . 3  |-  ( ( B  e.  ~H  /\  A  e.  CC  /\  C  e.  ~H )  ->  ( T `  ( B  +h  ( A  .h  C
) ) )  =  ( ( T `  B )  +h  ( T `  ( A  .h  C ) ) ) )
653com12 1199 . 2  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( T `  ( B  +h  ( A  .h  C
) ) )  =  ( ( T `  B )  +h  ( T `  ( A  .h  C ) ) ) )
72lnopmuli 27185 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  ~H )  ->  ( T `  ( A  .h  C )
)  =  ( A  .h  ( T `  C ) ) )
873adant2 1014 . . 3  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( T `  ( A  .h  C ) )  =  ( A  .h  ( T `  C )
) )
98oveq2d 6248 . 2  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( T `  B
)  +h  ( T `
 ( A  .h  C ) ) )  =  ( ( T `
 B )  +h  ( A  .h  ( T `  C )
) ) )
106, 9eqtrd 2441 1  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( T `  ( B  +h  ( A  .h  C
) ) )  =  ( ( T `  B )  +h  ( A  .h  ( T `  C ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 972    = wceq 1403    e. wcel 1840   ` cfv 5523  (class class class)co 6232   CCcc 9438   ~Hchil 26131    +h cva 26132    .h csm 26133   LinOpclo 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-resscn 9497  ax-1cn 9498  ax-icn 9499  ax-addcl 9500  ax-addrcl 9501  ax-mulcl 9502  ax-mulrcl 9503  ax-mulcom 9504  ax-addass 9505  ax-mulass 9506  ax-distr 9507  ax-i2m1 9508  ax-1ne0 9509  ax-1rid 9510  ax-rnegex 9511  ax-rrecex 9512  ax-cnre 9513  ax-pre-lttri 9514  ax-pre-lttrn 9515  ax-pre-ltadd 9516  ax-hilex 26211  ax-hfvadd 26212  ax-hvass 26214  ax-hv0cl 26215  ax-hvaddid 26216  ax-hfvmul 26217  ax-hvmulid 26218  ax-hvdistr2 26221  ax-hvmul0 26222
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-reu 2758  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-op 3976  df-uni 4189  df-iun 4270  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4735  df-po 4741  df-so 4742  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-er 7266  df-map 7377  df-en 7473  df-dom 7474  df-sdom 7475  df-pnf 9578  df-mnf 9579  df-ltxr 9581  df-sub 9761  df-neg 9762  df-hvsub 26183  df-lnop 27054
This theorem is referenced by:  lnopsubi  27187  lnopeq0lem1  27218  lnophmlem2  27230
  Copyright terms: Public domain W3C validator