MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnon0 Structured version   Unicode version

Theorem lnon0 25417
Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnon0.1  |-  X  =  ( BaseSet `  U )
lnon0.6  |-  Z  =  ( 0vec `  U
)
lnon0.0  |-  O  =  ( U  0op  W
)
lnon0.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
lnon0  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  T  =/=  O )  ->  E. x  e.  X  x  =/=  Z )
Distinct variable groups:    x, L    x, T    x, U    x, W    x, X
Allowed substitution hints:    O( x)    Z( x)

Proof of Theorem lnon0
StepHypRef Expression
1 ralnex 2910 . . . . 5  |-  ( A. x  e.  X  -.  x  =/=  Z  <->  -.  E. x  e.  X  x  =/=  Z )
2 nne 2668 . . . . . 6  |-  ( -.  x  =/=  Z  <->  x  =  Z )
32ralbii 2895 . . . . 5  |-  ( A. x  e.  X  -.  x  =/=  Z  <->  A. x  e.  X  x  =  Z )
41, 3bitr3i 251 . . . 4  |-  ( -. 
E. x  e.  X  x  =/=  Z  <->  A. x  e.  X  x  =  Z )
5 fveq2 5866 . . . . . . . . . 10  |-  ( x  =  Z  ->  ( T `  x )  =  ( T `  Z ) )
6 lnon0.1 . . . . . . . . . . 11  |-  X  =  ( BaseSet `  U )
7 eqid 2467 . . . . . . . . . . 11  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
8 lnon0.6 . . . . . . . . . . 11  |-  Z  =  ( 0vec `  U
)
9 eqid 2467 . . . . . . . . . . 11  |-  ( 0vec `  W )  =  (
0vec `  W )
10 lnon0.7 . . . . . . . . . . 11  |-  L  =  ( U  LnOp  W
)
116, 7, 8, 9, 10lno0 25375 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T `  Z )  =  ( 0vec `  W
) )
125, 11sylan9eqr 2530 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  x  =  Z )  ->  ( T `  x )  =  ( 0vec `  W
) )
1312ex 434 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  (
x  =  Z  -> 
( T `  x
)  =  ( 0vec `  W ) ) )
1413ralimdv 2874 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( A. x  e.  X  x  =  Z  ->  A. x  e.  X  ( T `  x )  =  ( 0vec `  W
) ) )
156, 7, 10lnof 25374 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> ( BaseSet `  W
) )
16 ffn 5731 . . . . . . . 8  |-  ( T : X --> ( BaseSet `  W )  ->  T  Fn  X )
1715, 16syl 16 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T  Fn  X )
1814, 17jctild 543 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( A. x  e.  X  x  =  Z  ->  ( T  Fn  X  /\  A. x  e.  X  ( T `  x )  =  ( 0vec `  W
) ) ) )
19 fconstfv 6123 . . . . . . 7  |-  ( T : X --> { (
0vec `  W ) } 
<->  ( T  Fn  X  /\  A. x  e.  X  ( T `  x )  =  ( 0vec `  W
) ) )
20 fvex 5876 . . . . . . . 8  |-  ( 0vec `  W )  e.  _V
2120fconst2 6117 . . . . . . 7  |-  ( T : X --> { (
0vec `  W ) } 
<->  T  =  ( X  X.  { ( 0vec `  W ) } ) )
2219, 21bitr3i 251 . . . . . 6  |-  ( ( T  Fn  X  /\  A. x  e.  X  ( T `  x )  =  ( 0vec `  W
) )  <->  T  =  ( X  X.  { (
0vec `  W ) } ) )
2318, 22syl6ib 226 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( A. x  e.  X  x  =  Z  ->  T  =  ( X  X.  { ( 0vec `  W
) } ) ) )
24 lnon0.0 . . . . . . . 8  |-  O  =  ( U  0op  W
)
256, 9, 240ofval 25406 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  O  =  ( X  X.  { ( 0vec `  W
) } ) )
26253adant3 1016 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  O  =  ( X  X.  { ( 0vec `  W
) } ) )
2726eqeq2d 2481 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T  =  O  <->  T  =  ( X  X.  { (
0vec `  W ) } ) ) )
2823, 27sylibrd 234 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( A. x  e.  X  x  =  Z  ->  T  =  O ) )
294, 28syl5bi 217 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( -.  E. x  e.  X  x  =/=  Z  ->  T  =  O ) )
3029necon1ad 2683 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T  =/=  O  ->  E. x  e.  X  x  =/=  Z ) )
3130imp 429 1  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  T  =/=  O )  ->  E. x  e.  X  x  =/=  Z )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {csn 4027    X. cxp 4997    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284   NrmCVeccnv 25181   BaseSetcba 25183   0veccn0v 25185    LnOp clno 25359    0op c0o 25362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-ltxr 9633  df-sub 9807  df-neg 9808  df-grpo 24897  df-gid 24898  df-ginv 24899  df-ablo 24988  df-vc 25143  df-nv 25189  df-va 25192  df-ba 25193  df-sm 25194  df-0v 25195  df-nmcv 25197  df-lno 25363  df-0o 25366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator