HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnaddi Structured version   Unicode version

Theorem lnfnaddi 26635
Description: Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1  |-  T  e. 
LinFn
Assertion
Ref Expression
lnfnaddi  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( T `  ( A  +h  B ) )  =  ( ( T `
 A )  +  ( T `  B
) ) )

Proof of Theorem lnfnaddi
StepHypRef Expression
1 ax-1cn 9546 . . 3  |-  1  e.  CC
2 lnfnl.1 . . . 4  |-  T  e. 
LinFn
32lnfnli 26632 . . 3  |-  ( ( 1  e.  CC  /\  A  e.  ~H  /\  B  e.  ~H )  ->  ( T `  ( (
1  .h  A )  +h  B ) )  =  ( ( 1  x.  ( T `  A ) )  +  ( T `  B
) ) )
41, 3mp3an1 1311 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( T `  (
( 1  .h  A
)  +h  B ) )  =  ( ( 1  x.  ( T `
 A ) )  +  ( T `  B ) ) )
5 ax-hvmulid 25596 . . . . 5  |-  ( A  e.  ~H  ->  (
1  .h  A )  =  A )
65oveq1d 6297 . . . 4  |-  ( A  e.  ~H  ->  (
( 1  .h  A
)  +h  B )  =  ( A  +h  B ) )
76fveq2d 5868 . . 3  |-  ( A  e.  ~H  ->  ( T `  ( (
1  .h  A )  +h  B ) )  =  ( T `  ( A  +h  B
) ) )
87adantr 465 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( T `  (
( 1  .h  A
)  +h  B ) )  =  ( T `
 ( A  +h  B ) ) )
92lnfnfi 26633 . . . . . 6  |-  T : ~H
--> CC
109ffvelrni 6018 . . . . 5  |-  ( A  e.  ~H  ->  ( T `  A )  e.  CC )
1110mulid2d 9610 . . . 4  |-  ( A  e.  ~H  ->  (
1  x.  ( T `
 A ) )  =  ( T `  A ) )
1211adantr 465 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( 1  x.  ( T `  A )
)  =  ( T `
 A ) )
1312oveq1d 6297 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( 1  x.  ( T `  A
) )  +  ( T `  B ) )  =  ( ( T `  A )  +  ( T `  B ) ) )
144, 8, 133eqtr3d 2516 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( T `  ( A  +h  B ) )  =  ( ( T `
 A )  +  ( T `  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   ` cfv 5586  (class class class)co 6282   CCcc 9486   1c1 9489    + caddc 9491    x. cmul 9493   ~Hchil 25509    +h cva 25510    .h csm 25511   LinFnclf 25544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-mulcl 9550  ax-mulcom 9552  ax-mulass 9554  ax-distr 9555  ax-1rid 9558  ax-cnre 9561  ax-hilex 25589  ax-hvmulid 25596
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-map 7419  df-lnfn 26440
This theorem is referenced by:  lnfnaddmuli  26637  nlelshi  26652
  Copyright terms: Public domain W3C validator