HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfn0i Structured version   Unicode version

Theorem lnfn0i 26634
Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1  |-  T  e. 
LinFn
Assertion
Ref Expression
lnfn0i  |-  ( T `
 0h )  =  0

Proof of Theorem lnfn0i
StepHypRef Expression
1 ax-hv0cl 25593 . . . 4  |-  0h  e.  ~H
2 lnfnl.1 . . . . . 6  |-  T  e. 
LinFn
32lnfnfi 26633 . . . . 5  |-  T : ~H
--> CC
43ffvelrni 6018 . . . 4  |-  ( 0h  e.  ~H  ->  ( T `  0h )  e.  CC )
51, 4ax-mp 5 . . 3  |-  ( T `
 0h )  e.  CC
6 pncan 9822 . . 3  |-  ( ( ( T `  0h )  e.  CC  /\  ( T `  0h )  e.  CC )  ->  (
( ( T `  0h )  +  ( T `  0h )
)  -  ( T `
 0h ) )  =  ( T `  0h ) )
75, 5, 6mp2an 672 . 2  |-  ( ( ( T `  0h )  +  ( T `  0h ) )  -  ( T `  0h )
)  =  ( T `
 0h )
8 ax-1cn 9546 . . . . . . 7  |-  1  e.  CC
92lnfnli 26632 . . . . . . 7  |-  ( ( 1  e.  CC  /\  0h  e.  ~H  /\  0h  e.  ~H )  ->  ( T `  ( (
1  .h  0h )  +h  0h ) )  =  ( ( 1  x.  ( T `  0h ) )  +  ( T `  0h )
) )
108, 1, 1, 9mp3an 1324 . . . . . 6  |-  ( T `
 ( ( 1  .h  0h )  +h 
0h ) )  =  ( ( 1  x.  ( T `  0h ) )  +  ( T `  0h )
)
118, 1hvmulcli 25604 . . . . . . . . 9  |-  ( 1  .h  0h )  e. 
~H
12 ax-hvaddid 25594 . . . . . . . . 9  |-  ( ( 1  .h  0h )  e.  ~H  ->  ( (
1  .h  0h )  +h  0h )  =  ( 1  .h  0h )
)
1311, 12ax-mp 5 . . . . . . . 8  |-  ( ( 1  .h  0h )  +h  0h )  =  ( 1  .h  0h )
14 ax-hvmulid 25596 . . . . . . . . 9  |-  ( 0h  e.  ~H  ->  (
1  .h  0h )  =  0h )
151, 14ax-mp 5 . . . . . . . 8  |-  ( 1  .h  0h )  =  0h
1613, 15eqtri 2496 . . . . . . 7  |-  ( ( 1  .h  0h )  +h  0h )  =  0h
1716fveq2i 5867 . . . . . 6  |-  ( T `
 ( ( 1  .h  0h )  +h 
0h ) )  =  ( T `  0h )
1810, 17eqtr3i 2498 . . . . 5  |-  ( ( 1  x.  ( T `
 0h ) )  +  ( T `  0h ) )  =  ( T `  0h )
195mulid2i 9595 . . . . . 6  |-  ( 1  x.  ( T `  0h ) )  =  ( T `  0h )
2019oveq1i 6292 . . . . 5  |-  ( ( 1  x.  ( T `
 0h ) )  +  ( T `  0h ) )  =  ( ( T `  0h )  +  ( T `  0h ) )
2118, 20eqtr3i 2498 . . . 4  |-  ( T `
 0h )  =  ( ( T `  0h )  +  ( T `  0h )
)
2221oveq1i 6292 . . 3  |-  ( ( T `  0h )  -  ( T `  0h ) )  =  ( ( ( T `  0h )  +  ( T `  0h )
)  -  ( T `
 0h ) )
235subidi 9886 . . 3  |-  ( ( T `  0h )  -  ( T `  0h ) )  =  0
2422, 23eqtr3i 2498 . 2  |-  ( ( ( T `  0h )  +  ( T `  0h ) )  -  ( T `  0h )
)  =  0
257, 24eqtr3i 2498 1  |-  ( T `
 0h )  =  0
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767   ` cfv 5586  (class class class)co 6282   CCcc 9486   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    - cmin 9801   ~Hchil 25509    +h cva 25510    .h csm 25511   0hc0v 25514   LinFnclf 25544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-hilex 25589  ax-hv0cl 25593  ax-hvaddid 25594  ax-hfvmul 25595  ax-hvmulid 25596
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-ltxr 9629  df-sub 9803  df-lnfn 26440
This theorem is referenced by:  lnfnmuli  26636  lnfn0  26639  nmbdfnlbi  26641  nmcfnexi  26643  nmcfnlbi  26644  nlelshi  26652
  Copyright terms: Public domain W3C validator