Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lneq2at Structured version   Unicode version

Theorem lneq2at 34451
Description: A line equals the join of any two of its distinct points (atoms). (Contributed by NM, 29-Apr-2012.)
Hypotheses
Ref Expression
lneq2at.b  |-  B  =  ( Base `  K
)
lneq2at.l  |-  .<_  =  ( le `  K )
lneq2at.j  |-  .\/  =  ( join `  K )
lneq2at.a  |-  A  =  ( Atoms `  K )
lneq2at.n  |-  N  =  ( Lines `  K )
lneq2at.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
lneq2at  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  X  =  ( P  .\/  Q ) )

Proof of Theorem lneq2at
Dummy variables  s 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1021 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  K  e.  HL )
2 simp12 1022 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  X  e.  B )
31, 2jca 532 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  ( K  e.  HL  /\  X  e.  B ) )
4 simp13 1023 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  ( M `  X )  e.  N )
5 lneq2at.b . . . . 5  |-  B  =  ( Base `  K
)
6 lneq2at.j . . . . 5  |-  .\/  =  ( join `  K )
7 lneq2at.a . . . . 5  |-  A  =  ( Atoms `  K )
8 lneq2at.n . . . . 5  |-  N  =  ( Lines `  K )
9 lneq2at.m . . . . 5  |-  M  =  ( pmap `  K
)
105, 6, 7, 8, 9isline3 34449 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( M `  X )  e.  N  <->  E. r  e.  A  E. s  e.  A  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) ) )
1110biimpd 207 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( M `  X )  e.  N  ->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  X  =  (
r  .\/  s )
) ) )
123, 4, 11sylc 60 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  X  =  ( r  .\/  s
) ) )
13 simp3r 1020 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  X  =  ( r  .\/  s ) )
14 simp111 1120 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  K  e.  HL )
15 simp121 1123 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  P  e.  A
)
16 simp122 1124 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  Q  e.  A
)
1715, 16jca 532 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  ( P  e.  A  /\  Q  e.  A ) )
18 simp2 992 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  ( r  e.  A  /\  s  e.  A ) )
1914, 17, 183jca 1171 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A )  /\  (
r  e.  A  /\  s  e.  A )
) )
20 simp123 1125 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  P  =/=  Q
)
2119, 20jca 532 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( r  e.  A  /\  s  e.  A
) )  /\  P  =/=  Q ) )
22 hllat 34037 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Lat )
231, 22syl 16 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  K  e.  Lat )
24 simp21 1024 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  P  e.  A )
255, 7atbase 33963 . . . . . . . . . . . 12  |-  ( P  e.  A  ->  P  e.  B )
2624, 25syl 16 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  P  e.  B )
27 simp22 1025 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  Q  e.  A )
285, 7atbase 33963 . . . . . . . . . . . 12  |-  ( Q  e.  A  ->  Q  e.  B )
2927, 28syl 16 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  Q  e.  B )
3026, 29, 23jca 1171 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  ( P  e.  B  /\  Q  e.  B  /\  X  e.  B )
)
3123, 30jca 532 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  ( K  e.  Lat  /\  ( P  e.  B  /\  Q  e.  B  /\  X  e.  B )
) )
32 simp3 993 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  ( P  .<_  X  /\  Q  .<_  X ) )
33 lneq2at.l . . . . . . . . . . 11  |-  .<_  =  ( le `  K )
345, 33, 6latjle12 15540 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  Q  e.  B  /\  X  e.  B
) )  ->  (
( P  .<_  X  /\  Q  .<_  X )  <->  ( P  .\/  Q )  .<_  X ) )
3534biimpd 207 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  Q  e.  B  /\  X  e.  B
) )  ->  (
( P  .<_  X  /\  Q  .<_  X )  -> 
( P  .\/  Q
)  .<_  X ) )
3631, 32, 35sylc 60 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  ( P  .\/  Q )  .<_  X )
37363ad2ant1 1012 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  ( P  .\/  Q )  .<_  X )
3837, 13breqtrd 4466 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  ( P  .\/  Q )  .<_  ( r  .\/  s ) )
39 simpl1 994 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( r  e.  A  /\  s  e.  A ) )  /\  P  =/=  Q )  ->  K  e.  HL )
40 simpl2l 1044 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( r  e.  A  /\  s  e.  A ) )  /\  P  =/=  Q )  ->  P  e.  A )
41 simpl2r 1045 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( r  e.  A  /\  s  e.  A ) )  /\  P  =/=  Q )  ->  Q  e.  A )
42 simpr 461 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( r  e.  A  /\  s  e.  A ) )  /\  P  =/=  Q )  ->  P  =/=  Q )
43 simpl3 996 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( r  e.  A  /\  s  e.  A ) )  /\  P  =/=  Q )  -> 
( r  e.  A  /\  s  e.  A
) )
4433, 6, 7ps-1 34150 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( r  e.  A  /\  s  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( r  .\/  s )  <->  ( P  .\/  Q )  =  ( r  .\/  s ) ) )
4539, 40, 41, 42, 43, 44syl131anc 1236 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( r  e.  A  /\  s  e.  A ) )  /\  P  =/=  Q )  -> 
( ( P  .\/  Q )  .<_  ( r  .\/  s )  <->  ( P  .\/  Q )  =  ( r  .\/  s ) ) )
4645biimpd 207 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( r  e.  A  /\  s  e.  A ) )  /\  P  =/=  Q )  -> 
( ( P  .\/  Q )  .<_  ( r  .\/  s )  ->  ( P  .\/  Q )  =  ( r  .\/  s
) ) )
4721, 38, 46sylc 60 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  ( P  .\/  Q )  =  ( r 
.\/  s ) )
4813, 47eqtr4d 2506 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) )  /\  ( r  e.  A  /\  s  e.  A )  /\  (
r  =/=  s  /\  X  =  ( r  .\/  s ) ) )  ->  X  =  ( P  .\/  Q ) )
49483exp 1190 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  (
( r  e.  A  /\  s  e.  A
)  ->  ( (
r  =/=  s  /\  X  =  ( r  .\/  s ) )  ->  X  =  ( P  .\/  Q ) ) ) )
5049rexlimdvv 2956 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  ( E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  X  =  (
r  .\/  s )
)  ->  X  =  ( P  .\/  Q ) ) )
5112, 50mpd 15 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
)  /\  ( P  .<_  X  /\  Q  .<_  X ) )  ->  X  =  ( P  .\/  Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2657   E.wrex 2810   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   Basecbs 14481   lecple 14553   joincjn 15422   Latclat 15523   Atomscatm 33937   HLchlt 34024   Linesclines 34167   pmapcpmap 34170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-poset 15424  df-plt 15436  df-lub 15452  df-glb 15453  df-join 15454  df-meet 15455  df-p0 15517  df-lat 15524  df-clat 15586  df-oposet 33850  df-ol 33852  df-oml 33853  df-covers 33940  df-ats 33941  df-atl 33972  df-cvlat 33996  df-hlat 34025  df-lines 34174  df-pmap 34177
This theorem is referenced by:  lnjatN  34453  lncmp  34456  cdlema1N  34464
  Copyright terms: Public domain W3C validator