Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lncvrelatN Structured version   Unicode version

Theorem lncvrelatN 35207
Description: A lattice element covered by a line is an atom. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lncvrelat.b  |-  B  =  ( Base `  K
)
lncvrelat.c  |-  C  =  (  <o  `  K )
lncvrelat.a  |-  A  =  ( Atoms `  K )
lncvrelat.n  |-  N  =  ( Lines `  K )
lncvrelat.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
lncvrelatN  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  ( ( M `  X )  e.  N  /\  P C X ) )  ->  P  e.  A )

Proof of Theorem lncvrelatN
Dummy variables  r 
q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 34790 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 1016 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  ->  K  e.  Lat )
3 eqid 2441 . . . . 5  |-  ( join `  K )  =  (
join `  K )
4 lncvrelat.a . . . . 5  |-  A  =  ( Atoms `  K )
5 lncvrelat.n . . . . 5  |-  N  =  ( Lines `  K )
6 lncvrelat.m . . . . 5  |-  M  =  ( pmap `  K
)
73, 4, 5, 6isline2 35200 . . . 4  |-  ( K  e.  Lat  ->  (
( M `  X
)  e.  N  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  ( M `  X )  =  ( M `  ( q ( join `  K ) r ) ) ) ) )
82, 7syl 16 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  ->  ( ( M `  X )  e.  N  <->  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  ( M `  X )  =  ( M `  ( q ( join `  K ) r ) ) ) ) )
9 simpll1 1034 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  K  e.  HL )
10 simpll2 1035 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  X  e.  B )
119, 1syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  K  e.  Lat )
12 simplrl 759 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  q  e.  A )
13 lncvrelat.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
1413, 4atbase 34716 . . . . . . . . 9  |-  ( q  e.  A  ->  q  e.  B )
1512, 14syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  q  e.  B )
16 simplrr 760 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  r  e.  A )
1713, 4atbase 34716 . . . . . . . . 9  |-  ( r  e.  A  ->  r  e.  B )
1816, 17syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  r  e.  B )
1913, 3latjcl 15550 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  q  e.  B  /\  r  e.  B )  ->  ( q ( join `  K ) r )  e.  B )
2011, 15, 18, 19syl3anc 1227 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  (
q ( join `  K
) r )  e.  B )
2113, 6pmap11 35188 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  ( q ( join `  K ) r )  e.  B )  -> 
( ( M `  X )  =  ( M `  ( q ( join `  K
) r ) )  <-> 
X  =  ( q ( join `  K
) r ) ) )
229, 10, 20, 21syl3anc 1227 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  (
( M `  X
)  =  ( M `
 ( q (
join `  K )
r ) )  <->  X  =  ( q ( join `  K ) r ) ) )
23 breq2 4437 . . . . . . . 8  |-  ( X  =  ( q (
join `  K )
r )  ->  ( P C X  <->  P C
( q ( join `  K ) r ) ) )
2423biimpd 207 . . . . . . 7  |-  ( X  =  ( q (
join `  K )
r )  ->  ( P C X  ->  P C ( q (
join `  K )
r ) ) )
259adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  ->  K  e.  HL )
26 simpll3 1036 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  P  e.  B )
2726, 12, 163jca 1175 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  ( P  e.  B  /\  q  e.  A  /\  r  e.  A )
)
2827adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  -> 
( P  e.  B  /\  q  e.  A  /\  r  e.  A
) )
29 simplr 754 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  -> 
q  =/=  r )
30 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  ->  P C ( q (
join `  K )
r ) )
31 lncvrelat.c . . . . . . . . . 10  |-  C  =  (  <o  `  K )
3213, 3, 31, 4cvrat2 34855 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  B  /\  q  e.  A  /\  r  e.  A
)  /\  ( q  =/=  r  /\  P C ( q ( join `  K ) r ) ) )  ->  P  e.  A )
3325, 28, 29, 30, 32syl112anc 1231 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  ->  P  e.  A )
3433ex 434 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  ( P C ( q (
join `  K )
r )  ->  P  e.  A ) )
3524, 34syl9r 72 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  ( X  =  ( q
( join `  K )
r )  ->  ( P C X  ->  P  e.  A ) ) )
3622, 35sylbid 215 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  (
( M `  X
)  =  ( M `
 ( q (
join `  K )
r ) )  -> 
( P C X  ->  P  e.  A
) ) )
3736expimpd 603 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  ( q  e.  A  /\  r  e.  A
) )  ->  (
( q  =/=  r  /\  ( M `  X
)  =  ( M `
 ( q (
join `  K )
r ) ) )  ->  ( P C X  ->  P  e.  A ) ) )
3837rexlimdvva 2940 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  ->  ( E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  ( M `
 X )  =  ( M `  (
q ( join `  K
) r ) ) )  ->  ( P C X  ->  P  e.  A ) ) )
398, 38sylbid 215 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  ->  ( ( M `  X )  e.  N  ->  ( P C X  ->  P  e.  A
) ) )
4039imp32 433 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  ( ( M `  X )  e.  N  /\  P C X ) )  ->  P  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   E.wrex 2792   class class class wbr 4433   ` cfv 5574  (class class class)co 6277   Basecbs 14504   joincjn 15442   Latclat 15544    <o ccvr 34689   Atomscatm 34690   HLchlt 34777   Linesclines 34920   pmapcpmap 34923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-preset 15426  df-poset 15444  df-plt 15457  df-lub 15473  df-glb 15474  df-join 15475  df-meet 15476  df-p0 15538  df-lat 15545  df-clat 15607  df-oposet 34603  df-ol 34605  df-oml 34606  df-covers 34693  df-ats 34694  df-atl 34725  df-cvlat 34749  df-hlat 34778  df-lines 34927  df-pmap 34930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator