Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lncvrelatN Structured version   Unicode version

Theorem lncvrelatN 33265
Description: A lattice element covered by a line is an atom. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lncvrelat.b  |-  B  =  ( Base `  K
)
lncvrelat.c  |-  C  =  (  <o  `  K )
lncvrelat.a  |-  A  =  ( Atoms `  K )
lncvrelat.n  |-  N  =  ( Lines `  K )
lncvrelat.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
lncvrelatN  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  ( ( M `  X )  e.  N  /\  P C X ) )  ->  P  e.  A )

Proof of Theorem lncvrelatN
Dummy variables  r 
q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 32848 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 1009 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  ->  K  e.  Lat )
3 eqid 2438 . . . . 5  |-  ( join `  K )  =  (
join `  K )
4 lncvrelat.a . . . . 5  |-  A  =  ( Atoms `  K )
5 lncvrelat.n . . . . 5  |-  N  =  ( Lines `  K )
6 lncvrelat.m . . . . 5  |-  M  =  ( pmap `  K
)
73, 4, 5, 6isline2 33258 . . . 4  |-  ( K  e.  Lat  ->  (
( M `  X
)  e.  N  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  ( M `  X )  =  ( M `  ( q ( join `  K ) r ) ) ) ) )
82, 7syl 16 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  ->  ( ( M `  X )  e.  N  <->  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  ( M `  X )  =  ( M `  ( q ( join `  K ) r ) ) ) ) )
9 simpll1 1027 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  K  e.  HL )
10 simpll2 1028 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  X  e.  B )
119, 1syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  K  e.  Lat )
12 simplrl 759 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  q  e.  A )
13 lncvrelat.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
1413, 4atbase 32774 . . . . . . . . 9  |-  ( q  e.  A  ->  q  e.  B )
1512, 14syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  q  e.  B )
16 simplrr 760 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  r  e.  A )
1713, 4atbase 32774 . . . . . . . . 9  |-  ( r  e.  A  ->  r  e.  B )
1816, 17syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  r  e.  B )
1913, 3latjcl 15213 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  q  e.  B  /\  r  e.  B )  ->  ( q ( join `  K ) r )  e.  B )
2011, 15, 18, 19syl3anc 1218 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  (
q ( join `  K
) r )  e.  B )
2113, 6pmap11 33246 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  ( q ( join `  K ) r )  e.  B )  -> 
( ( M `  X )  =  ( M `  ( q ( join `  K
) r ) )  <-> 
X  =  ( q ( join `  K
) r ) ) )
229, 10, 20, 21syl3anc 1218 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  (
( M `  X
)  =  ( M `
 ( q (
join `  K )
r ) )  <->  X  =  ( q ( join `  K ) r ) ) )
23 breq2 4291 . . . . . . . 8  |-  ( X  =  ( q (
join `  K )
r )  ->  ( P C X  <->  P C
( q ( join `  K ) r ) ) )
2423biimpd 207 . . . . . . 7  |-  ( X  =  ( q (
join `  K )
r )  ->  ( P C X  ->  P C ( q (
join `  K )
r ) ) )
259adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  ->  K  e.  HL )
26 simpll3 1029 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  P  e.  B )
2726, 12, 163jca 1168 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  ( P  e.  B  /\  q  e.  A  /\  r  e.  A )
)
2827adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  -> 
( P  e.  B  /\  q  e.  A  /\  r  e.  A
) )
29 simplr 754 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  -> 
q  =/=  r )
30 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  ->  P C ( q (
join `  K )
r ) )
31 lncvrelat.c . . . . . . . . . 10  |-  C  =  (  <o  `  K )
3213, 3, 31, 4cvrat2 32913 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  B  /\  q  e.  A  /\  r  e.  A
)  /\  ( q  =/=  r  /\  P C ( q ( join `  K ) r ) ) )  ->  P  e.  A )
3325, 28, 29, 30, 32syl112anc 1222 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  ->  P  e.  A )
3433ex 434 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  ( P C ( q (
join `  K )
r )  ->  P  e.  A ) )
3524, 34syl9r 72 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  ( X  =  ( q
( join `  K )
r )  ->  ( P C X  ->  P  e.  A ) ) )
3622, 35sylbid 215 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  (
( M `  X
)  =  ( M `
 ( q (
join `  K )
r ) )  -> 
( P C X  ->  P  e.  A
) ) )
3736expimpd 603 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  ( q  e.  A  /\  r  e.  A
) )  ->  (
( q  =/=  r  /\  ( M `  X
)  =  ( M `
 ( q (
join `  K )
r ) ) )  ->  ( P C X  ->  P  e.  A ) ) )
3837rexlimdvva 2843 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  ->  ( E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  ( M `
 X )  =  ( M `  (
q ( join `  K
) r ) ) )  ->  ( P C X  ->  P  e.  A ) ) )
398, 38sylbid 215 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  ->  ( ( M `  X )  e.  N  ->  ( P C X  ->  P  e.  A
) ) )
4039imp32 433 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  ( ( M `  X )  e.  N  /\  P C X ) )  ->  P  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   E.wrex 2711   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   Basecbs 14166   joincjn 15106   Latclat 15207    <o ccvr 32747   Atomscatm 32748   HLchlt 32835   Linesclines 32978   pmapcpmap 32981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-poset 15108  df-plt 15120  df-lub 15136  df-glb 15137  df-join 15138  df-meet 15139  df-p0 15201  df-lat 15208  df-clat 15270  df-oposet 32661  df-ol 32663  df-oml 32664  df-covers 32751  df-ats 32752  df-atl 32783  df-cvlat 32807  df-hlat 32836  df-lines 32985  df-pmap 32988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator