Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lncvrelatN Unicode version

Theorem lncvrelatN 30263
Description: A lattice element covered by a line is an atom. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lncvrelat.b  |-  B  =  ( Base `  K
)
lncvrelat.c  |-  C  =  (  <o  `  K )
lncvrelat.a  |-  A  =  ( Atoms `  K )
lncvrelat.n  |-  N  =  ( Lines `  K )
lncvrelat.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
lncvrelatN  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  ( ( M `  X )  e.  N  /\  P C X ) )  ->  P  e.  A )

Proof of Theorem lncvrelatN
Dummy variables  r 
q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 29846 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 978 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  ->  K  e.  Lat )
3 eqid 2404 . . . . 5  |-  ( join `  K )  =  (
join `  K )
4 lncvrelat.a . . . . 5  |-  A  =  ( Atoms `  K )
5 lncvrelat.n . . . . 5  |-  N  =  ( Lines `  K )
6 lncvrelat.m . . . . 5  |-  M  =  ( pmap `  K
)
73, 4, 5, 6isline2 30256 . . . 4  |-  ( K  e.  Lat  ->  (
( M `  X
)  e.  N  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  ( M `  X )  =  ( M `  ( q ( join `  K ) r ) ) ) ) )
82, 7syl 16 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  ->  ( ( M `  X )  e.  N  <->  E. q  e.  A  E. r  e.  A  (
q  =/=  r  /\  ( M `  X )  =  ( M `  ( q ( join `  K ) r ) ) ) ) )
9 simpll1 996 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  K  e.  HL )
10 simpll2 997 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  X  e.  B )
119, 1syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  K  e.  Lat )
12 simplrl 737 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  q  e.  A )
13 lncvrelat.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
1413, 4atbase 29772 . . . . . . . . 9  |-  ( q  e.  A  ->  q  e.  B )
1512, 14syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  q  e.  B )
16 simplrr 738 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  r  e.  A )
1713, 4atbase 29772 . . . . . . . . 9  |-  ( r  e.  A  ->  r  e.  B )
1816, 17syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  r  e.  B )
1913, 3latjcl 14434 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  q  e.  B  /\  r  e.  B )  ->  ( q ( join `  K ) r )  e.  B )
2011, 15, 18, 19syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  (
q ( join `  K
) r )  e.  B )
2113, 6pmap11 30244 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  ( q ( join `  K ) r )  e.  B )  -> 
( ( M `  X )  =  ( M `  ( q ( join `  K
) r ) )  <-> 
X  =  ( q ( join `  K
) r ) ) )
229, 10, 20, 21syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  (
( M `  X
)  =  ( M `
 ( q (
join `  K )
r ) )  <->  X  =  ( q ( join `  K ) r ) ) )
23 breq2 4176 . . . . . . . 8  |-  ( X  =  ( q (
join `  K )
r )  ->  ( P C X  <->  P C
( q ( join `  K ) r ) ) )
2423biimpd 199 . . . . . . 7  |-  ( X  =  ( q (
join `  K )
r )  ->  ( P C X  ->  P C ( q (
join `  K )
r ) ) )
259adantr 452 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  ->  K  e.  HL )
26 simpll3 998 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  P  e.  B )
2726, 12, 163jca 1134 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  ( P  e.  B  /\  q  e.  A  /\  r  e.  A )
)
2827adantr 452 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  -> 
( P  e.  B  /\  q  e.  A  /\  r  e.  A
) )
29 simplr 732 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  -> 
q  =/=  r )
30 simpr 448 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  ->  P C ( q (
join `  K )
r ) )
31 lncvrelat.c . . . . . . . . . 10  |-  C  =  (  <o  `  K )
3213, 3, 31, 4cvrat2 29911 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  B  /\  q  e.  A  /\  r  e.  A
)  /\  ( q  =/=  r  /\  P C ( q ( join `  K ) r ) ) )  ->  P  e.  A )
3325, 28, 29, 30, 32syl112anc 1188 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  /\  P C ( q (
join `  K )
r ) )  ->  P  e.  A )
3433ex 424 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  ( P C ( q (
join `  K )
r )  ->  P  e.  A ) )
3524, 34syl9r 69 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  ( X  =  ( q
( join `  K )
r )  ->  ( P C X  ->  P  e.  A ) ) )
3622, 35sylbid 207 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  (
q  e.  A  /\  r  e.  A )
)  /\  q  =/=  r )  ->  (
( M `  X
)  =  ( M `
 ( q (
join `  K )
r ) )  -> 
( P C X  ->  P  e.  A
) ) )
3736expimpd 587 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  ( q  e.  A  /\  r  e.  A
) )  ->  (
( q  =/=  r  /\  ( M `  X
)  =  ( M `
 ( q (
join `  K )
r ) ) )  ->  ( P C X  ->  P  e.  A ) ) )
3837rexlimdvva 2797 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  ->  ( E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  ( M `
 X )  =  ( M `  (
q ( join `  K
) r ) ) )  ->  ( P C X  ->  P  e.  A ) ) )
398, 38sylbid 207 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  ->  ( ( M `  X )  e.  N  ->  ( P C X  ->  P  e.  A
) ) )
4039imp32 423 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B )  /\  ( ( M `  X )  e.  N  /\  P C X ) )  ->  P  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   Basecbs 13424   joincjn 14356   Latclat 14429    <o ccvr 29745   Atomscatm 29746   HLchlt 29833   Linesclines 29976   pmapcpmap 29979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-lines 29983  df-pmap 29986
  Copyright terms: Public domain W3C validator