HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnconi Structured version   Unicode version

Theorem lnconi 25574
Description: Lemma for lnopconi 25575 and lnfnconi 25596. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lncon.1  |-  ( T  e.  C  ->  S  e.  RR )
lncon.2  |-  ( ( T  e.  C  /\  y  e.  ~H )  ->  ( N `  ( T `  y )
)  <_  ( S  x.  ( normh `  y )
) )
lncon.3  |-  ( T  e.  C  <->  A. x  e.  ~H  A. z  e.  RR+  E. y  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
y  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
lncon.4  |-  ( y  e.  ~H  ->  ( N `  ( T `  y ) )  e.  RR )
lncon.5  |-  ( ( w  e.  ~H  /\  x  e.  ~H )  ->  ( T `  (
w  -h  x ) )  =  ( ( T `  w ) M ( T `  x ) ) )
Assertion
Ref Expression
lnconi  |-  ( T  e.  C  <->  E. x  e.  RR  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
) )
Distinct variable groups:    x, w, y, z, N    y, M    w, T, x, y, z   
x, S, y    y, C
Allowed substitution hints:    C( x, z, w)    S( z, w)    M( x, z, w)

Proof of Theorem lnconi
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 lncon.1 . . 3  |-  ( T  e.  C  ->  S  e.  RR )
2 lncon.2 . . . 4  |-  ( ( T  e.  C  /\  y  e.  ~H )  ->  ( N `  ( T `  y )
)  <_  ( S  x.  ( normh `  y )
) )
32ralrimiva 2822 . . 3  |-  ( T  e.  C  ->  A. y  e.  ~H  ( N `  ( T `  y ) )  <_  ( S  x.  ( normh `  y )
) )
4 oveq1 6199 . . . . . 6  |-  ( x  =  S  ->  (
x  x.  ( normh `  y ) )  =  ( S  x.  ( normh `  y ) ) )
54breq2d 4404 . . . . 5  |-  ( x  =  S  ->  (
( N `  ( T `  y )
)  <_  ( x  x.  ( normh `  y )
)  <->  ( N `  ( T `  y ) )  <_  ( S  x.  ( normh `  y )
) ) )
65ralbidv 2838 . . . 4  |-  ( x  =  S  ->  ( A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( x  x.  ( normh `  y )
)  <->  A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( S  x.  ( normh `  y )
) ) )
76rspcev 3171 . . 3  |-  ( ( S  e.  RR  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( S  x.  ( normh `  y ) ) )  ->  E. x  e.  RR  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
) )
81, 3, 7syl2anc 661 . 2  |-  ( T  e.  C  ->  E. x  e.  RR  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
) )
9 arch 10679 . . . . . 6  |-  ( x  e.  RR  ->  E. n  e.  NN  x  <  n
)
109adantr 465 . . . . 5  |-  ( ( x  e.  RR  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) ) )  ->  E. n  e.  NN  x  <  n
)
11 nnre 10432 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  RR )
12 simplll 757 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  x  e.  RR )
13 simpllr 758 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  n  e.  RR )
14 normcl 24664 . . . . . . . . . . . . 13  |-  ( y  e.  ~H  ->  ( normh `  y )  e.  RR )
1514adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  ( normh `  y )  e.  RR )
16 normge0 24665 . . . . . . . . . . . . 13  |-  ( y  e.  ~H  ->  0  <_  ( normh `  y )
)
1716adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  0  <_  ( normh `  y )
)
18 ltle 9566 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  n  e.  RR )  ->  ( x  <  n  ->  x  <_  n )
)
1918imp 429 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n
)  ->  x  <_  n )
2019adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  x  <_  n )
2112, 13, 15, 17, 20lemul1ad 10375 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  (
x  x.  ( normh `  y ) )  <_ 
( n  x.  ( normh `  y ) ) )
22 lncon.4 . . . . . . . . . . . . 13  |-  ( y  e.  ~H  ->  ( N `  ( T `  y ) )  e.  RR )
2322adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  ( N `  ( T `  y ) )  e.  RR )
24 simpll 753 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n
)  ->  x  e.  RR )
25 remulcl 9470 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  ( normh `  y )  e.  RR )  ->  (
x  x.  ( normh `  y ) )  e.  RR )
2624, 14, 25syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  (
x  x.  ( normh `  y ) )  e.  RR )
27 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n
)  ->  n  e.  RR )
28 remulcl 9470 . . . . . . . . . . . . 13  |-  ( ( n  e.  RR  /\  ( normh `  y )  e.  RR )  ->  (
n  x.  ( normh `  y ) )  e.  RR )
2927, 14, 28syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  (
n  x.  ( normh `  y ) )  e.  RR )
30 letr 9571 . . . . . . . . . . . 12  |-  ( ( ( N `  ( T `  y )
)  e.  RR  /\  ( x  x.  ( normh `  y ) )  e.  RR  /\  (
n  x.  ( normh `  y ) )  e.  RR )  ->  (
( ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
)  /\  ( x  x.  ( normh `  y )
)  <_  ( n  x.  ( normh `  y )
) )  ->  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) ) )
3123, 26, 29, 30syl3anc 1219 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  (
( ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
)  /\  ( x  x.  ( normh `  y )
)  <_  ( n  x.  ( normh `  y )
) )  ->  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) ) )
3221, 31mpan2d 674 . . . . . . . . . 10  |-  ( ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n )  /\  y  e.  ~H )  ->  (
( N `  ( T `  y )
)  <_  ( x  x.  ( normh `  y )
)  ->  ( N `  ( T `  y
) )  <_  (
n  x.  ( normh `  y ) ) ) )
3332ralimdva 2824 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  n  e.  RR )  /\  x  <  n
)  ->  ( A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) )  ->  A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) ) )
3433impancom 440 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  n  e.  RR )  /\  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
) )  ->  (
x  <  n  ->  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) ) )
3534an32s 802 . . . . . . 7  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( x  x.  ( normh `  y )
) )  /\  n  e.  RR )  ->  (
x  <  n  ->  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) ) )
3611, 35sylan2 474 . . . . . 6  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( x  x.  ( normh `  y )
) )  /\  n  e.  NN )  ->  (
x  <  n  ->  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) ) )
3736reximdva 2926 . . . . 5  |-  ( ( x  e.  RR  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) ) )  ->  ( E. n  e.  NN  x  <  n  ->  E. n  e.  NN  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( n  x.  ( normh `  y )
) ) )
3810, 37mpd 15 . . . 4  |-  ( ( x  e.  RR  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) ) )  ->  E. n  e.  NN  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( n  x.  ( normh `  y )
) )
3938rexlimiva 2934 . . 3  |-  ( E. x  e.  RR  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) )  ->  E. n  e.  NN  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) )
40 simprr 756 . . . . . . . 8  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  ->  z  e.  RR+ )
41 simpll 753 . . . . . . . . 9  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  ->  n  e.  NN )
4241nnrpd 11129 . . . . . . . 8  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  ->  n  e.  RR+ )
4340, 42rpdivcld 11147 . . . . . . 7  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  ->  ( z  /  n )  e.  RR+ )
44 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  ->  w  e.  ~H )
45 simprll 761 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  ->  x  e.  ~H )
46 hvsubcl 24556 . . . . . . . . . . . . . 14  |-  ( ( w  e.  ~H  /\  x  e.  ~H )  ->  ( w  -h  x
)  e.  ~H )
4744, 45, 46syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( w  -h  x
)  e.  ~H )
48 fveq2 5791 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( w  -h  x )  ->  ( T `  y )  =  ( T `  ( w  -h  x
) ) )
4948fveq2d 5795 . . . . . . . . . . . . . . 15  |-  ( y  =  ( w  -h  x )  ->  ( N `  ( T `  y ) )  =  ( N `  ( T `  ( w  -h  x ) ) ) )
50 fveq2 5791 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( w  -h  x )  ->  ( normh `  y )  =  ( normh `  ( w  -h  x ) ) )
5150oveq2d 6208 . . . . . . . . . . . . . . 15  |-  ( y  =  ( w  -h  x )  ->  (
n  x.  ( normh `  y ) )  =  ( n  x.  ( normh `  ( w  -h  x ) ) ) )
5249, 51breq12d 4405 . . . . . . . . . . . . . 14  |-  ( y  =  ( w  -h  x )  ->  (
( N `  ( T `  y )
)  <_  ( n  x.  ( normh `  y )
)  <->  ( N `  ( T `  ( w  -h  x ) ) )  <_  ( n  x.  ( normh `  ( w  -h  x ) ) ) ) )
5352rspcva 3169 . . . . . . . . . . . . 13  |-  ( ( ( w  -h  x
)  e.  ~H  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) )  ->  ( N `  ( T `  (
w  -h  x ) ) )  <_  (
n  x.  ( normh `  ( w  -h  x
) ) ) )
5447, 53sylan 471 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) )  ->  ( N `  ( T `  (
w  -h  x ) ) )  <_  (
n  x.  ( normh `  ( w  -h  x
) ) ) )
5554an32s 802 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  ( N `  ( T `  ( w  -h  x
) ) )  <_ 
( n  x.  ( normh `  ( w  -h  x ) ) ) )
5649eleq1d 2520 . . . . . . . . . . . . . . 15  |-  ( y  =  ( w  -h  x )  ->  (
( N `  ( T `  y )
)  e.  RR  <->  ( N `  ( T `  (
w  -h  x ) ) )  e.  RR ) )
5756, 22vtoclga 3134 . . . . . . . . . . . . . 14  |-  ( ( w  -h  x )  e.  ~H  ->  ( N `  ( T `  ( w  -h  x
) ) )  e.  RR )
5847, 57syl 16 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( N `  ( T `  ( w  -h  x ) ) )  e.  RR )
5911adantr 465 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  ->  n  e.  RR )
60 normcl 24664 . . . . . . . . . . . . . . 15  |-  ( ( w  -h  x )  e.  ~H  ->  ( normh `  ( w  -h  x ) )  e.  RR )
6147, 60syl 16 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( normh `  ( w  -h  x ) )  e.  RR )
62 remulcl 9470 . . . . . . . . . . . . . 14  |-  ( ( n  e.  RR  /\  ( normh `  ( w  -h  x ) )  e.  RR )  ->  (
n  x.  ( normh `  ( w  -h  x
) ) )  e.  RR )
6359, 61, 62syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( n  x.  ( normh `  ( w  -h  x ) ) )  e.  RR )
64 simprlr 762 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
z  e.  RR+ )
6564rpred 11130 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
z  e.  RR )
66 lelttr 9568 . . . . . . . . . . . . 13  |-  ( ( ( N `  ( T `  ( w  -h  x ) ) )  e.  RR  /\  (
n  x.  ( normh `  ( w  -h  x
) ) )  e.  RR  /\  z  e.  RR )  ->  (
( ( N `  ( T `  ( w  -h  x ) ) )  <_  ( n  x.  ( normh `  ( w  -h  x ) ) )  /\  ( n  x.  ( normh `  ( w  -h  x ) ) )  <  z )  -> 
( N `  ( T `  ( w  -h  x ) ) )  <  z ) )
6758, 63, 65, 66syl3anc 1219 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( ( ( N `
 ( T `  ( w  -h  x
) ) )  <_ 
( n  x.  ( normh `  ( w  -h  x ) ) )  /\  ( n  x.  ( normh `  ( w  -h  x ) ) )  <  z )  -> 
( N `  ( T `  ( w  -h  x ) ) )  <  z ) )
6867adantlr 714 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  (
( ( N `  ( T `  ( w  -h  x ) ) )  <_  ( n  x.  ( normh `  ( w  -h  x ) ) )  /\  ( n  x.  ( normh `  ( w  -h  x ) ) )  <  z )  -> 
( N `  ( T `  ( w  -h  x ) ) )  <  z ) )
6955, 68mpand 675 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  (
( n  x.  ( normh `  ( w  -h  x ) ) )  <  z  ->  ( N `  ( T `  ( w  -h  x
) ) )  < 
z ) )
70 nnrp 11103 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  RR+ )
7170rpregt0d 11136 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
n  e.  RR  /\  0  <  n ) )
7271adantr 465 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( n  e.  RR  /\  0  <  n ) )
73 ltmuldiv2 10306 . . . . . . . . . . . 12  |-  ( ( ( normh `  ( w  -h  x ) )  e.  RR  /\  z  e.  RR  /\  ( n  e.  RR  /\  0  <  n ) )  -> 
( ( n  x.  ( normh `  ( w  -h  x ) ) )  <  z  <->  ( normh `  ( w  -h  x
) )  <  (
z  /  n ) ) )
7461, 65, 72, 73syl3anc 1219 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( ( n  x.  ( normh `  ( w  -h  x ) ) )  <  z  <->  ( normh `  ( w  -h  x
) )  <  (
z  /  n ) ) )
7574adantlr 714 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  (
( n  x.  ( normh `  ( w  -h  x ) ) )  <  z  <->  ( normh `  ( w  -h  x
) )  <  (
z  /  n ) ) )
76 lncon.5 . . . . . . . . . . . . . 14  |-  ( ( w  e.  ~H  /\  x  e.  ~H )  ->  ( T `  (
w  -h  x ) )  =  ( ( T `  w ) M ( T `  x ) ) )
7744, 45, 76syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( ( x  e. 
~H  /\  z  e.  RR+ )  /\  w  e. 
~H ) )  -> 
( T `  (
w  -h  x ) )  =  ( ( T `  w ) M ( T `  x ) ) )
7877adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  ( T `  ( w  -h  x ) )  =  ( ( T `  w ) M ( T `  x ) ) )
7978fveq2d 5795 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  ( N `  ( T `  ( w  -h  x
) ) )  =  ( N `  (
( T `  w
) M ( T `
 x ) ) ) )
8079breq1d 4402 . . . . . . . . . 10  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  (
( N `  ( T `  ( w  -h  x ) ) )  <  z  <->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
8169, 75, 803imtr3d 267 . . . . . . . . 9  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
( x  e.  ~H  /\  z  e.  RR+ )  /\  w  e.  ~H ) )  ->  (
( normh `  ( w  -h  x ) )  < 
( z  /  n
)  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
8281anassrs 648 . . . . . . . 8  |-  ( ( ( ( n  e.  NN  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  /\  w  e.  ~H )  ->  ( ( normh `  ( w  -h  x
) )  <  (
z  /  n )  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
8382ralrimiva 2822 . . . . . . 7  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  ->  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  ( z  /  n )  -> 
( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z ) )
84 breq2 4396 . . . . . . . . . 10  |-  ( y  =  ( z  /  n )  ->  (
( normh `  ( w  -h  x ) )  < 
y  <->  ( normh `  (
w  -h  x ) )  <  ( z  /  n ) ) )
8584imbi1d 317 . . . . . . . . 9  |-  ( y  =  ( z  /  n )  ->  (
( ( normh `  (
w  -h  x ) )  <  y  -> 
( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z )  <-> 
( ( normh `  (
w  -h  x ) )  <  ( z  /  n )  -> 
( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z ) ) )
8685ralbidv 2838 . . . . . . . 8  |-  ( y  =  ( z  /  n )  ->  ( A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  y  -> 
( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z )  <->  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  ( z  /  n )  -> 
( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z ) ) )
8786rspcev 3171 . . . . . . 7  |-  ( ( ( z  /  n
)  e.  RR+  /\  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
( z  /  n
)  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )  ->  E. y  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  y  ->  ( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z ) )
8843, 83, 87syl2anc 661 . . . . . 6  |-  ( ( ( n  e.  NN  /\ 
A. y  e.  ~H  ( N `  ( T `
 y ) )  <_  ( n  x.  ( normh `  y )
) )  /\  (
x  e.  ~H  /\  z  e.  RR+ ) )  ->  E. y  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
y  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
8988ralrimivva 2906 . . . . 5  |-  ( ( n  e.  NN  /\  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) ) )  ->  A. x  e.  ~H  A. z  e.  RR+  E. y  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
y  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
9089rexlimiva 2934 . . . 4  |-  ( E. n  e.  NN  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) )  ->  A. x  e.  ~H  A. z  e.  RR+  E. y  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  y  ->  ( N `  (
( T `  w
) M ( T `
 x ) ) )  <  z ) )
91 lncon.3 . . . 4  |-  ( T  e.  C  <->  A. x  e.  ~H  A. z  e.  RR+  E. y  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
y  ->  ( N `  ( ( T `  w ) M ( T `  x ) ) )  <  z
) )
9290, 91sylibr 212 . . 3  |-  ( E. n  e.  NN  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( n  x.  ( normh `  y ) )  ->  T  e.  C
)
9339, 92syl 16 . 2  |-  ( E. x  e.  RR  A. y  e.  ~H  ( N `  ( T `  y ) )  <_ 
( x  x.  ( normh `  y ) )  ->  T  e.  C
)
948, 93impbii 188 1  |-  ( T  e.  C  <->  E. x  e.  RR  A. y  e. 
~H  ( N `  ( T `  y ) )  <_  ( x  x.  ( normh `  y )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796   class class class wbr 4392   ` cfv 5518  (class class class)co 6192   RRcr 9384   0cc0 9385    x. cmul 9390    < clt 9521    <_ cle 9522    / cdiv 10096   NNcn 10425   RR+crp 11094   ~Hchil 24458   normhcno 24462    -h cmv 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462  ax-pre-sup 9463  ax-hfvadd 24539  ax-hv0cl 24542  ax-hfvmul 24544  ax-hvmul0 24549  ax-hfi 24618  ax-his1 24621  ax-his3 24623  ax-his4 24624
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-2nd 6680  df-recs 6934  df-rdg 6968  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-sup 7794  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-div 10097  df-nn 10426  df-2 10483  df-3 10484  df-n0 10683  df-z 10750  df-uz 10965  df-rp 11095  df-seq 11910  df-exp 11969  df-cj 12692  df-re 12693  df-im 12694  df-sqr 12828  df-hnorm 24507  df-hvsub 24510
This theorem is referenced by:  lnopconi  25575  lnfnconi  25596
  Copyright terms: Public domain W3C validator