Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lncmp Structured version   Unicode version

Theorem lncmp 33766
Description: If two lines are comparable, they are equal. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
lncmp.b  |-  B  =  ( Base `  K
)
lncmp.l  |-  .<_  =  ( le `  K )
lncmp.n  |-  N  =  ( Lines `  K )
lncmp.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
lncmp  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( M `  X )  e.  N  /\  ( M `  Y
)  e.  N ) )  ->  ( X  .<_  Y  <->  X  =  Y
) )

Proof of Theorem lncmp
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 759 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y )  ->  ( M `  X )  e.  N
)
2 simpll1 1027 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y )  ->  K  e.  HL )
3 simpll2 1028 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y )  ->  X  e.  B
)
4 lncmp.b . . . . . . 7  |-  B  =  ( Base `  K
)
5 eqid 2454 . . . . . . 7  |-  ( join `  K )  =  (
join `  K )
6 eqid 2454 . . . . . . 7  |-  ( Atoms `  K )  =  (
Atoms `  K )
7 lncmp.n . . . . . . 7  |-  N  =  ( Lines `  K )
8 lncmp.m . . . . . . 7  |-  M  =  ( pmap `  K
)
94, 5, 6, 7, 8isline3 33759 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( M `  X )  e.  N  <->  E. p  e.  ( Atoms `  K ) E. q  e.  ( Atoms `  K )
( p  =/=  q  /\  X  =  (
p ( join `  K
) q ) ) ) )
102, 3, 9syl2anc 661 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y )  ->  ( ( M `
 X )  e.  N  <->  E. p  e.  (
Atoms `  K ) E. q  e.  ( Atoms `  K ) ( p  =/=  q  /\  X  =  ( p (
join `  K )
q ) ) ) )
111, 10mpbid 210 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y )  ->  E. p  e.  (
Atoms `  K ) E. q  e.  ( Atoms `  K ) ( p  =/=  q  /\  X  =  ( p (
join `  K )
q ) ) )
12 simp3rr 1062 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  X  =  ( p
( join `  K )
q ) )
13 simp1l1 1081 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  K  e.  HL )
14 simp1l3 1083 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  Y  e.  B )
15 simp1rr 1054 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  -> 
( M `  Y
)  e.  N )
16 simp3ll 1059 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  p  e.  ( Atoms `  K ) )
17 simp3lr 1060 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  -> 
q  e.  ( Atoms `  K ) )
18 simp3rl 1061 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  p  =/=  q )
19 lncmp.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
20 hllat 33347 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Lat )
2113, 20syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  K  e.  Lat )
224, 6atbase 33273 . . . . . . . . . . 11  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
2316, 22syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  p  e.  B )
24 simp1l2 1082 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  X  e.  B )
2519, 5, 6hlatlej1 33358 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  ->  p  .<_  ( p ( join `  K
) q ) )
2613, 16, 17, 25syl3anc 1219 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  p  .<_  ( p (
join `  K )
q ) )
2726, 12breqtrrd 4427 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  p  .<_  X )
28 simp2 989 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  X  .<_  Y )
294, 19, 21, 23, 24, 14, 27, 28lattrd 15348 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  p  .<_  Y )
304, 6atbase 33273 . . . . . . . . . . 11  |-  ( q  e.  ( Atoms `  K
)  ->  q  e.  B )
3117, 30syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  -> 
q  e.  B )
3219, 5, 6hlatlej2 33359 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  ->  q  .<_  ( p ( join `  K
) q ) )
3313, 16, 17, 32syl3anc 1219 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  -> 
q  .<_  ( p (
join `  K )
q ) )
3433, 12breqtrrd 4427 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  -> 
q  .<_  X )
354, 19, 21, 31, 24, 14, 34, 28lattrd 15348 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  -> 
q  .<_  Y )
364, 19, 5, 6, 7, 8lneq2at 33761 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  Y  e.  B  /\  ( M `  Y )  e.  N )  /\  ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )  /\  p  =/=  q )  /\  (
p  .<_  Y  /\  q  .<_  Y ) )  ->  Y  =  ( p
( join `  K )
q ) )
3713, 14, 15, 16, 17, 18, 29, 35, 36syl332anc 1250 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  Y  =  ( p
( join `  K )
q ) )
3812, 37eqtr4d 2498 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y  /\  ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) )  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) ) )  ->  X  =  Y )
39383expia 1190 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y )  ->  ( ( ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
)  /\  ( p  =/=  q  /\  X  =  ( p ( join `  K ) q ) ) )  ->  X  =  Y ) )
4039expd 436 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y )  ->  ( ( p  e.  ( Atoms `  K
)  /\  q  e.  ( Atoms `  K )
)  ->  ( (
p  =/=  q  /\  X  =  ( p
( join `  K )
q ) )  ->  X  =  Y )
) )
4140rexlimdvv 2953 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y )  ->  ( E. p  e.  ( Atoms `  K ) E. q  e.  ( Atoms `  K ) ( p  =/=  q  /\  X  =  ( p
( join `  K )
q ) )  ->  X  =  Y )
)
4211, 41mpd 15 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( M `  X
)  e.  N  /\  ( M `  Y )  e.  N ) )  /\  X  .<_  Y )  ->  X  =  Y )
4342ex 434 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( M `  X )  e.  N  /\  ( M `  Y
)  e.  N ) )  ->  ( X  .<_  Y  ->  X  =  Y ) )
44 simpl1 991 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( M `  X )  e.  N  /\  ( M `  Y
)  e.  N ) )  ->  K  e.  HL )
4544, 20syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( M `  X )  e.  N  /\  ( M `  Y
)  e.  N ) )  ->  K  e.  Lat )
46 simpl2 992 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( M `  X )  e.  N  /\  ( M `  Y
)  e.  N ) )  ->  X  e.  B )
474, 19latref 15343 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  X  .<_  X )
4845, 46, 47syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( M `  X )  e.  N  /\  ( M `  Y
)  e.  N ) )  ->  X  .<_  X )
49 breq2 4405 . . 3  |-  ( X  =  Y  ->  ( X  .<_  X  <->  X  .<_  Y ) )
5048, 49syl5ibcom 220 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( M `  X )  e.  N  /\  ( M `  Y
)  e.  N ) )  ->  ( X  =  Y  ->  X  .<_  Y ) )
5143, 50impbid 191 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( M `  X )  e.  N  /\  ( M `  Y
)  e.  N ) )  ->  ( X  .<_  Y  <->  X  =  Y
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   E.wrex 2800   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   Basecbs 14293   lecple 14365   joincjn 15234   Latclat 15335   Atomscatm 33247   HLchlt 33334   Linesclines 33477   pmapcpmap 33480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-poset 15236  df-plt 15248  df-lub 15264  df-glb 15265  df-join 15266  df-meet 15267  df-p0 15329  df-lat 15336  df-clat 15398  df-oposet 33160  df-ol 33162  df-oml 33163  df-covers 33250  df-ats 33251  df-atl 33282  df-cvlat 33306  df-hlat 33335  df-lines 33484  df-pmap 33487
This theorem is referenced by:  2lnat  33767
  Copyright terms: Public domain W3C validator