Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnatexN Structured version   Unicode version

Theorem lnatexN 34931
Description: There is an atom in a line different from any other. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnatex.b  |-  B  =  ( Base `  K
)
lnatex.l  |-  .<_  =  ( le `  K )
lnatex.a  |-  A  =  ( Atoms `  K )
lnatex.n  |-  N  =  ( Lines `  K )
lnatex.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
lnatexN  |-  ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
Distinct variable groups:    A, q    .<_ , q    P, q    X, q
Allowed substitution hints:    B( q)    K( q)    M( q)    N( q)

Proof of Theorem lnatexN
Dummy variables  r 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnatex.b . . . 4  |-  B  =  ( Base `  K
)
2 eqid 2467 . . . 4  |-  ( join `  K )  =  (
join `  K )
3 lnatex.a . . . 4  |-  A  =  ( Atoms `  K )
4 lnatex.n . . . 4  |-  N  =  ( Lines `  K )
5 lnatex.m . . . 4  |-  M  =  ( pmap `  K
)
61, 2, 3, 4, 5isline3 34928 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( M `  X )  e.  N  <->  E. r  e.  A  E. s  e.  A  (
r  =/=  s  /\  X  =  ( r
( join `  K )
s ) ) ) )
76biimp3a 1328 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  ->  E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )
8 simpl2r 1050 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =  P )  ->  s  e.  A )
9 simpl3l 1051 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =  P )  ->  r  =/=  s )
109necomd 2738 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =  P )  ->  s  =/=  r )
11 simpr 461 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =  P )  ->  r  =  P )
1210, 11neeqtrd 2762 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =  P )  ->  s  =/=  P )
13 simpl11 1071 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =  P )  ->  K  e.  HL )
14 simpl2l 1049 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =  P )  ->  r  e.  A )
15 lnatex.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
1615, 2, 3hlatlej2 34528 . . . . . . . 8  |-  ( ( K  e.  HL  /\  r  e.  A  /\  s  e.  A )  ->  s  .<_  ( r
( join `  K )
s ) )
1713, 14, 8, 16syl3anc 1228 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =  P )  ->  s  .<_  ( r ( join `  K ) s ) )
18 simpl3r 1052 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =  P )  ->  X  =  ( r (
join `  K )
s ) )
1917, 18breqtrrd 4479 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =  P )  ->  s  .<_  X )
20 neeq1 2748 . . . . . . . 8  |-  ( q  =  s  ->  (
q  =/=  P  <->  s  =/=  P ) )
21 breq1 4456 . . . . . . . 8  |-  ( q  =  s  ->  (
q  .<_  X  <->  s  .<_  X ) )
2220, 21anbi12d 710 . . . . . . 7  |-  ( q  =  s  ->  (
( q  =/=  P  /\  q  .<_  X )  <-> 
( s  =/=  P  /\  s  .<_  X ) ) )
2322rspcev 3219 . . . . . 6  |-  ( ( s  e.  A  /\  ( s  =/=  P  /\  s  .<_  X ) )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
248, 12, 19, 23syl12anc 1226 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =  P )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
25 simpl2l 1049 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =/= 
P )  ->  r  e.  A )
26 simpr 461 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =/= 
P )  ->  r  =/=  P )
27 simpl11 1071 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =/= 
P )  ->  K  e.  HL )
28 simpl2r 1050 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =/= 
P )  ->  s  e.  A )
2915, 2, 3hlatlej1 34527 . . . . . . . 8  |-  ( ( K  e.  HL  /\  r  e.  A  /\  s  e.  A )  ->  r  .<_  ( r
( join `  K )
s ) )
3027, 25, 28, 29syl3anc 1228 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =/= 
P )  ->  r  .<_  ( r ( join `  K ) s ) )
31 simpl3r 1052 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =/= 
P )  ->  X  =  ( r (
join `  K )
s ) )
3230, 31breqtrrd 4479 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =/= 
P )  ->  r  .<_  X )
33 neeq1 2748 . . . . . . . 8  |-  ( q  =  r  ->  (
q  =/=  P  <->  r  =/=  P ) )
34 breq1 4456 . . . . . . . 8  |-  ( q  =  r  ->  (
q  .<_  X  <->  r  .<_  X ) )
3533, 34anbi12d 710 . . . . . . 7  |-  ( q  =  r  ->  (
( q  =/=  P  /\  q  .<_  X )  <-> 
( r  =/=  P  /\  r  .<_  X ) ) )
3635rspcev 3219 . . . . . 6  |-  ( ( r  e.  A  /\  ( r  =/=  P  /\  r  .<_  X ) )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
3725, 26, 32, 36syl12anc 1226 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `
 X )  e.  N )  /\  (
r  e.  A  /\  s  e.  A )  /\  ( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) ) )  /\  r  =/= 
P )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
3824, 37pm2.61dane 2785 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( r  e.  A  /\  s  e.  A
)  /\  ( r  =/=  s  /\  X  =  ( r ( join `  K ) s ) ) )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
39383exp 1195 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  -> 
( ( r  e.  A  /\  s  e.  A )  ->  (
( r  =/=  s  /\  X  =  (
r ( join `  K
) s ) )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) ) ) )
4039rexlimdvv 2965 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  -> 
( E. r  e.  A  E. s  e.  A  ( r  =/=  s  /\  X  =  ( r ( join `  K ) s ) )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) ) )
417, 40mpd 15 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2818   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   Basecbs 14507   lecple 14579   joincjn 15448   Atomscatm 34416   HLchlt 34503   Linesclines 34646   pmapcpmap 34649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-lat 15550  df-clat 15612  df-oposet 34329  df-ol 34331  df-oml 34332  df-covers 34419  df-ats 34420  df-atl 34451  df-cvlat 34475  df-hlat 34504  df-lines 34653  df-pmap 34656
This theorem is referenced by:  lnjatN  34932
  Copyright terms: Public domain W3C validator