Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmxrge0 Structured version   Unicode version

Theorem lmxrge0 28705
Description: Express "sequence  F converges to plus infinity" (i.e. diverges), for a sequence of nonnegative extended real numbers. (Contributed by Thierry Arnoux, 2-Aug-2017.)
Hypotheses
Ref Expression
lmxrge0.j  |-  J  =  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )
lmxrge0.6  |-  ( ph  ->  F : NN --> ( 0 [,] +oo ) )
lmxrge0.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  A )
Assertion
Ref Expression
lmxrge0  |-  ( ph  ->  ( F ( ~~> t `  J ) +oo  <->  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )
)
Distinct variable groups:    x, j, A    j, k, F, x   
k, J, x    ph, k, x
Allowed substitution hints:    ph( j)    A( k)    J( j)

Proof of Theorem lmxrge0
Dummy variables  a 
l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmxrge0.j . . . . . . 7  |-  J  =  ( TopOpen `  ( RR*ss  ( 0 [,] +oo ) ) )
2 eqid 2423 . . . . . . . 8  |-  ( RR*ss  ( 0 [,] +oo ) )  =  (
RR*ss  ( 0 [,] +oo ) )
3 xrstopn 20161 . . . . . . . 8  |-  (ordTop `  <_  )  =  ( TopOpen `  RR*s )
42, 3resstopn 20139 . . . . . . 7  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  =  (
TopOpen `  ( RR*ss  (
0 [,] +oo )
) )
51, 4eqtr4i 2448 . . . . . 6  |-  J  =  ( (ordTop `  <_  )t  ( 0 [,] +oo )
)
6 letopon 20158 . . . . . . 7  |-  (ordTop `  <_  )  e.  (TopOn `  RR* )
7 iccssxr 11663 . . . . . . 7  |-  ( 0 [,] +oo )  C_  RR*
8 resttopon 20114 . . . . . . 7  |-  ( ( (ordTop `  <_  )  e.  (TopOn `  RR* )  /\  ( 0 [,] +oo )  C_  RR* )  ->  (
(ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  (TopOn `  (
0 [,] +oo )
) )
96, 7, 8mp2an 676 . . . . . 6  |-  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )  e.  (TopOn `  ( 0 [,] +oo ) )
105, 9eqeltri 2497 . . . . 5  |-  J  e.  (TopOn `  ( 0 [,] +oo ) )
1110a1i 11 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  ( 0 [,] +oo ) ) )
12 nnuz 11140 . . . 4  |-  NN  =  ( ZZ>= `  1 )
13 1zzd 10914 . . . 4  |-  ( ph  ->  1  e.  ZZ )
14 lmxrge0.6 . . . 4  |-  ( ph  ->  F : NN --> ( 0 [,] +oo ) )
15 lmxrge0.7 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  A )
1611, 12, 13, 14, 15lmbrf 20213 . . 3  |-  ( ph  ->  ( F ( ~~> t `  J ) +oo  <->  ( +oo  e.  ( 0 [,] +oo )  /\  A. a  e.  J  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a ) ) ) )
17 0xr 9633 . . . . 5  |-  0  e.  RR*
18 pnfxr 11358 . . . . 5  |- +oo  e.  RR*
19 0lepnf 11379 . . . . 5  |-  0  <_ +oo
20 ubicc2 11695 . . . . 5  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  0  <_ +oo )  -> +oo  e.  ( 0 [,] +oo ) )
2117, 18, 19, 20mp3an 1360 . . . 4  |- +oo  e.  ( 0 [,] +oo )
2221biantrur 508 . . 3  |-  ( A. a  e.  J  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )  <->  ( +oo  e.  ( 0 [,] +oo )  /\  A. a  e.  J  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a ) ) )
2316, 22syl6bbr 266 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) +oo  <->  A. a  e.  J  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )
) )
24 rexr 9632 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  RR* )
2518a1i 11 . . . . . . . . . 10  |-  ( x  e.  RR  -> +oo  e.  RR* )
26 ltpnf 11368 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  < +oo )
27 ubioc1 11634 . . . . . . . . . 10  |-  ( ( x  e.  RR*  /\ +oo  e.  RR*  /\  x  < +oo )  -> +oo  e.  ( x (,] +oo ) )
2824, 25, 26, 27syl3anc 1264 . . . . . . . . 9  |-  ( x  e.  RR  -> +oo  e.  ( x (,] +oo ) )
29 0ltpnf 11370 . . . . . . . . . 10  |-  0  < +oo
30 ubioc1 11634 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  0  < +oo )  -> +oo  e.  ( 0 (,] +oo ) )
3117, 18, 29, 30mp3an 1360 . . . . . . . . 9  |- +oo  e.  ( 0 (,] +oo )
3228, 31jctir 540 . . . . . . . 8  |-  ( x  e.  RR  ->  ( +oo  e.  ( x (,] +oo )  /\ +oo  e.  ( 0 (,] +oo ) ) )
33 elin 3587 . . . . . . . 8  |-  ( +oo  e.  ( ( x (,] +oo )  i^i  (
0 (,] +oo )
)  <->  ( +oo  e.  ( x (,] +oo )  /\ +oo  e.  ( 0 (,] +oo )
) )
3432, 33sylibr 215 . . . . . . 7  |-  ( x  e.  RR  -> +oo  e.  ( ( x (,] +oo )  i^i  (
0 (,] +oo )
) )
3534ad2antlr 731 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  A. a  e.  J  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )
)  -> +oo  e.  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )
36 letop 20159 . . . . . . . . . . 11  |-  (ordTop `  <_  )  e.  Top
37 ovex 6272 . . . . . . . . . . 11  |-  ( 0 [,] +oo )  e. 
_V
38 iocpnfordt 20168 . . . . . . . . . . . 12  |-  ( x (,] +oo )  e.  (ordTop `  <_  )
39 iocpnfordt 20168 . . . . . . . . . . . 12  |-  ( 0 (,] +oo )  e.  (ordTop `  <_  )
40 inopn 19866 . . . . . . . . . . . 12  |-  ( ( (ordTop `  <_  )  e. 
Top  /\  ( x (,] +oo )  e.  (ordTop `  <_  )  /\  (
0 (,] +oo )  e.  (ordTop `  <_  ) )  ->  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  e.  (ordTop `  <_  ) )
4136, 38, 39, 40mp3an 1360 . . . . . . . . . . 11  |-  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  e.  (ordTop `  <_  )
42 elrestr 15265 . . . . . . . . . . 11  |-  ( ( (ordTop `  <_  )  e. 
Top  /\  ( 0 [,] +oo )  e. 
_V  /\  ( (
x (,] +oo )  i^i  ( 0 (,] +oo ) )  e.  (ordTop `  <_  ) )  -> 
( ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  i^i  (
0 [,] +oo )
)  e.  ( (ordTop `  <_  )t  ( 0 [,] +oo ) ) )
4336, 37, 41, 42mp3an 1360 . . . . . . . . . 10  |-  ( ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  i^i  (
0 [,] +oo )
)  e.  ( (ordTop `  <_  )t  ( 0 [,] +oo ) )
44 inss2 3621 . . . . . . . . . . . . 13  |-  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  C_  (
0 (,] +oo )
45 iocssicc 11668 . . . . . . . . . . . . 13  |-  ( 0 (,] +oo )  C_  ( 0 [,] +oo )
4644, 45sstri 3411 . . . . . . . . . . . 12  |-  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  C_  (
0 [,] +oo )
47 sseqin2 3619 . . . . . . . . . . . 12  |-  ( ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  C_  (
0 [,] +oo )  <->  ( ( 0 [,] +oo )  i^i  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  =  ( ( x (,] +oo )  i^i  (
0 (,] +oo )
) )
4846, 47mpbi 211 . . . . . . . . . . 11  |-  ( ( 0 [,] +oo )  i^i  ( ( x (,] +oo )  i^i  (
0 (,] +oo )
) )  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )
49 incom 3593 . . . . . . . . . . 11  |-  ( ( 0 [,] +oo )  i^i  ( ( x (,] +oo )  i^i  (
0 (,] +oo )
) )  =  ( ( ( x (,] +oo )  i^i  (
0 (,] +oo )
)  i^i  ( 0 [,] +oo ) )
5048, 49eqtr3i 2447 . . . . . . . . . 10  |-  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  =  ( ( ( x (,] +oo )  i^i  (
0 (,] +oo )
)  i^i  ( 0 [,] +oo ) )
5143, 50, 53eltr4i 2514 . . . . . . . . 9  |-  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  e.  J
5251a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  e.  J
)
53 eleq2 2490 . . . . . . . . . . 11  |-  ( a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  ->  ( +oo  e.  a  <-> +oo  e.  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) ) )
5453adantl 467 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  -> 
( +oo  e.  a  <-> +oo  e.  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) ) )
5554biimprd 226 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  -> 
( +oo  e.  (
( x (,] +oo )  i^i  ( 0 (,] +oo ) )  -> +oo  e.  a ) )
56 simp-5r 777 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  /\  l  e.  NN )  /\  k  e.  ( ZZ>=
`  l ) )  /\  A  e.  a )  ->  x  e.  RR )
5756rexrd 9636 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  /\  l  e.  NN )  /\  k  e.  ( ZZ>=
`  l ) )  /\  A  e.  a )  ->  x  e.  RR* )
58 simpr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  /\  l  e.  NN )  /\  k  e.  ( ZZ>=
`  l ) )  /\  A  e.  a )  ->  A  e.  a )
59 simp-4r 775 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  /\  l  e.  NN )  /\  k  e.  ( ZZ>=
`  l ) )  /\  A  e.  a )  ->  a  =  ( ( x (,] +oo )  i^i  (
0 (,] +oo )
) )
6058, 59eleqtrd 2503 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  /\  l  e.  NN )  /\  k  e.  ( ZZ>=
`  l ) )  /\  A  e.  a )  ->  A  e.  ( ( x (,] +oo )  i^i  (
0 (,] +oo )
) )
61 elin 3587 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  <->  ( A  e.  ( x (,] +oo )  /\  A  e.  ( 0 (,] +oo )
) )
6261simplbi 461 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  ->  A  e.  ( x (,] +oo ) )
6360, 62syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  /\  l  e.  NN )  /\  k  e.  ( ZZ>=
`  l ) )  /\  A  e.  a )  ->  A  e.  ( x (,] +oo ) )
64 elioc1 11624 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\ +oo  e.  RR* )  ->  ( A  e.  ( x (,] +oo )  <->  ( A  e.  RR*  /\  x  < 
A  /\  A  <_ +oo ) ) )
6518, 64mpan2 675 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR*  ->  ( A  e.  ( x (,] +oo )  <->  ( A  e. 
RR*  /\  x  <  A  /\  A  <_ +oo )
) )
6665biimpa 486 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  A  e.  ( x (,] +oo ) )  ->  ( A  e.  RR*  /\  x  <  A  /\  A  <_ +oo ) )
6766simp2d 1018 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR*  /\  A  e.  ( x (,] +oo ) )  ->  x  <  A )
6857, 63, 67syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  /\  l  e.  NN )  /\  k  e.  ( ZZ>=
`  l ) )  /\  A  e.  a )  ->  x  <  A )
6968ex 435 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  /\  l  e.  NN )  /\  k  e.  ( ZZ>=
`  l ) )  ->  ( A  e.  a  ->  x  <  A ) )
7069ralimdva 2768 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  a  =  (
( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  /\  l  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  l ) A  e.  a  ->  A. k  e.  ( ZZ>= `  l ) x  < 
A ) )
7170reximdva 2834 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  -> 
( E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) x  < 
A ) )
72 fveq2 5820 . . . . . . . . . . . 12  |-  ( j  =  l  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  l )
)
7372raleqdv 2965 . . . . . . . . . . 11  |-  ( j  =  l  ->  ( A. k  e.  ( ZZ>=
`  j ) x  <  A  <->  A. k  e.  ( ZZ>= `  l )
x  <  A )
)
7473cbvrexv 2992 . . . . . . . . . 10  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) x  < 
A  <->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) x  < 
A )
7571, 74syl6ibr 230 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  -> 
( E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) x  < 
A ) )
7655, 75imim12d 77 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  a  =  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) ) )  -> 
( ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )  ->  ( +oo  e.  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )
) )
7752, 76rspcimdv 3121 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. a  e.  J  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )  ->  ( +oo  e.  ( ( x (,] +oo )  i^i  ( 0 (,] +oo ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )
) )
7877imp 430 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  A. a  e.  J  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )
)  ->  ( +oo  e.  ( ( x (,] +oo )  i^i  (
0 (,] +oo )
)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )
)
7935, 78mpd 15 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  A. a  e.  J  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )
)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )
8079ex 435 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. a  e.  J  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) x  < 
A ) )
8180ralrimdva 2778 . . 3  |-  ( ph  ->  ( A. a  e.  J  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )  ->  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )
)
82 simplll 766 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  J )  /\  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) x  < 
A )  /\ +oo  e.  a )  ->  ph )
83 simpllr 767 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  J )  /\  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) x  < 
A )  /\ +oo  e.  a )  ->  a  e.  J )
84 simpr 462 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  J )  /\  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) x  < 
A )  /\ +oo  e.  a )  -> +oo  e.  a )
851pnfneige0 28704 . . . . . . 7  |-  ( ( a  e.  J  /\ +oo  e.  a )  ->  E. x  e.  RR  ( x (,] +oo )  C_  a )
8683, 84, 85syl2anc 665 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  J )  /\  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) x  < 
A )  /\ +oo  e.  a )  ->  E. x  e.  RR  ( x (,] +oo )  C_  a )
87 simplr 760 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  J )  /\  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) x  < 
A )  /\ +oo  e.  a )  ->  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )
88 r19.29r 2898 . . . . . . . 8  |-  ( ( E. x  e.  RR  ( x (,] +oo )  C_  a  /\  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )  ->  E. x  e.  RR  ( ( x (,] +oo )  C_  a  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) x  < 
A ) )
89 simp-4l 774 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  /\  l  e.  NN )  /\  k  e.  (
ZZ>= `  l ) )  ->  ph )
90 uznnssnn 11152 . . . . . . . . . . . . . . . . 17  |-  ( l  e.  NN  ->  ( ZZ>=
`  l )  C_  NN )
9190ad2antlr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  /\  l  e.  NN )  /\  k  e.  (
ZZ>= `  l ) )  ->  ( ZZ>= `  l
)  C_  NN )
92 simpr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  /\  l  e.  NN )  /\  k  e.  (
ZZ>= `  l ) )  ->  k  e.  (
ZZ>= `  l ) )
9391, 92sseldd 3403 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  /\  l  e.  NN )  /\  k  e.  (
ZZ>= `  l ) )  ->  k  e.  NN )
9489, 93jca 534 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  /\  l  e.  NN )  /\  k  e.  (
ZZ>= `  l ) )  ->  ( ph  /\  k  e.  NN )
)
95 simp-4r 775 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  /\  l  e.  NN )  /\  k  e.  (
ZZ>= `  l ) )  ->  x  e.  RR )
96 simpllr 767 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  /\  l  e.  NN )  /\  k  e.  (
ZZ>= `  l ) )  ->  ( x (,] +oo )  C_  a )
97 simplr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  /\  x  <  A
)  ->  ( x (,] +oo )  C_  a
)
98 simplr 760 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  x  <  A
)  ->  x  e.  RR )
9998rexrd 9636 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  x  <  A
)  ->  x  e.  RR* )
10014ffvelrnda 5976 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  ( 0 [,] +oo ) )
10115, 100eqeltrrd 2502 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  ( 0 [,] +oo ) )
1027, 101sseldi 3400 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  NN )  ->  A  e. 
RR* )
103102ad2antrr 730 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  x  <  A
)  ->  A  e.  RR* )
104 simpr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  x  <  A
)  ->  x  <  A )
105 pnfge 11378 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  RR*  ->  A  <_ +oo )
106103, 105syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  x  <  A
)  ->  A  <_ +oo )
10765biimpar 487 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  x  <  A  /\  A  <_ +oo ) )  ->  A  e.  ( x (,] +oo ) )
10899, 103, 104, 106, 107syl13anc 1266 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  x  <  A
)  ->  A  e.  ( x (,] +oo ) )
109108adantlr 719 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  /\  x  <  A
)  ->  A  e.  ( x (,] +oo ) )
11097, 109sseldd 3403 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  /\  x  <  A
)  ->  A  e.  a )
111110ex 435 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  ->  ( x  < 
A  ->  A  e.  a ) )
11294, 95, 96, 111syl21anc 1263 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  /\  l  e.  NN )  /\  k  e.  (
ZZ>= `  l ) )  ->  ( x  < 
A  ->  A  e.  a ) )
113112ralimdva 2768 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( x (,] +oo )  C_  a )  /\  l  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  l )
x  <  A  ->  A. k  e.  ( ZZ>= `  l ) A  e.  a ) )
114113reximdva 2834 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x (,] +oo )  C_  a )  ->  ( E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) x  < 
A  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )
)
11574, 114syl5bi 220 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
x (,] +oo )  C_  a )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) x  < 
A  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )
)
116115expimpd 606 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( ( x (,] +oo )  C_  a  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a ) )
117116rexlimdva 2851 . . . . . . . 8  |-  ( ph  ->  ( E. x  e.  RR  ( ( x (,] +oo )  C_  a  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a ) )
11888, 117syl5 33 . . . . . . 7  |-  ( ph  ->  ( ( E. x  e.  RR  ( x (,] +oo )  C_  a  /\  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a ) )
119118imp 430 . . . . . 6  |-  ( (
ph  /\  ( E. x  e.  RR  (
x (,] +oo )  C_  a  /\  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )
)  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )
12082, 86, 87, 119syl12anc 1262 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  J )  /\  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) x  < 
A )  /\ +oo  e.  a )  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )
121120exp31 607 . . . 4  |-  ( (
ph  /\  a  e.  J )  ->  ( A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) x  < 
A  ->  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )
) )
122121ralrimdva 2778 . . 3  |-  ( ph  ->  ( A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A  ->  A. a  e.  J  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a ) ) )
12381, 122impbid 193 . 2  |-  ( ph  ->  ( A. a  e.  J  ( +oo  e.  a  ->  E. l  e.  NN  A. k  e.  ( ZZ>= `  l ) A  e.  a )  <->  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )
)
12423, 123bitrd 256 1  |-  ( ph  ->  ( F ( ~~> t `  J ) +oo  <->  A. x  e.  RR  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
x  <  A )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   A.wral 2709   E.wrex 2710   _Vcvv 3017    i^i cin 3373    C_ wss 3374   class class class wbr 4361   -->wf 5535   ` cfv 5539  (class class class)co 6244   RRcr 9484   0cc0 9485   1c1 9486   +oocpnf 9618   RR*cxr 9620    < clt 9621    <_ cle 9622   NNcn 10555   ZZ>=cuz 11105   (,]cioc 11582   [,]cicc 11584   ↾s cress 15060   ↾t crest 15257   TopOpenctopn 15258  ordTopcordt 15335   RR*scxrs 15336   Topctop 19854  TopOnctopon 19855   ~~> tclm 20179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536  ax-cnex 9541  ax-resscn 9542  ax-1cn 9543  ax-icn 9544  ax-addcl 9545  ax-addrcl 9546  ax-mulcl 9547  ax-mulrcl 9548  ax-mulcom 9549  ax-addass 9550  ax-mulass 9551  ax-distr 9552  ax-i2m1 9553  ax-1ne0 9554  ax-1rid 9555  ax-rnegex 9556  ax-rrecex 9557  ax-cnre 9558  ax-pre-lttri 9559  ax-pre-lttrn 9560  ax-pre-ltadd 9561  ax-pre-mulgt0 9562
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-nel 2597  df-ral 2714  df-rex 2715  df-reu 2716  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-pss 3390  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4158  df-int 4194  df-iun 4239  df-br 4362  df-opab 4421  df-mpt 4422  df-tr 4457  df-eprel 4702  df-id 4706  df-po 4712  df-so 4713  df-fr 4750  df-we 4752  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-pred 5337  df-ord 5383  df-on 5384  df-lim 5385  df-suc 5386  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-riota 6206  df-ov 6247  df-oprab 6248  df-mpt2 6249  df-om 6646  df-1st 6746  df-2nd 6747  df-wrecs 6978  df-recs 7040  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-pm 7425  df-en 7520  df-dom 7521  df-sdom 7522  df-fin 7523  df-fi 7873  df-pnf 9623  df-mnf 9624  df-xr 9625  df-ltxr 9626  df-le 9627  df-sub 9808  df-neg 9809  df-nn 10556  df-2 10614  df-3 10615  df-4 10616  df-5 10617  df-6 10618  df-7 10619  df-8 10620  df-9 10621  df-10 10622  df-n0 10816  df-z 10884  df-dec 10998  df-uz 11106  df-ioo 11585  df-ioc 11586  df-ico 11587  df-icc 11588  df-fz 11731  df-struct 15061  df-ndx 15062  df-slot 15063  df-base 15064  df-sets 15065  df-ress 15066  df-plusg 15141  df-mulr 15142  df-tset 15147  df-ple 15148  df-ds 15150  df-rest 15259  df-topn 15260  df-topgen 15280  df-ordt 15337  df-xrs 15338  df-ps 16384  df-tsr 16385  df-top 19858  df-bases 19859  df-topon 19860  df-lm 20182
This theorem is referenced by:  lmdvglim  28707
  Copyright terms: Public domain W3C validator