MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsdi Structured version   Unicode version

Theorem lmodvsdi 16949
Description: Distributive law for scalar product (left-distributivity). (ax-hvdistr1 24361 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsdi.v  |-  V  =  ( Base `  W
)
lmodvsdi.a  |-  .+  =  ( +g  `  W )
lmodvsdi.f  |-  F  =  (Scalar `  W )
lmodvsdi.s  |-  .x.  =  ( .s `  W )
lmodvsdi.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
lmodvsdi  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( R  .x.  ( X  .+  Y
) )  =  ( ( R  .x.  X
)  .+  ( R  .x.  Y ) ) )

Proof of Theorem lmodvsdi
StepHypRef Expression
1 lmodvsdi.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
2 lmodvsdi.a . . . . . . . . 9  |-  .+  =  ( +g  `  W )
3 lmodvsdi.s . . . . . . . . 9  |-  .x.  =  ( .s `  W )
4 lmodvsdi.f . . . . . . . . 9  |-  F  =  (Scalar `  W )
5 lmodvsdi.k . . . . . . . . 9  |-  K  =  ( Base `  F
)
6 eqid 2438 . . . . . . . . 9  |-  ( +g  `  F )  =  ( +g  `  F )
7 eqid 2438 . . . . . . . . 9  |-  ( .r
`  F )  =  ( .r `  F
)
8 eqid 2438 . . . . . . . . 9  |-  ( 1r
`  F )  =  ( 1r `  F
)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 16931 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  R  e.  K )  /\  ( Y  e.  V  /\  X  e.  V
) )  ->  (
( ( R  .x.  X )  e.  V  /\  ( R  .x.  ( X  .+  Y ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  Y ) )  /\  ( ( R ( +g  `  F
) R )  .x.  X )  =  ( ( R  .x.  X
)  .+  ( R  .x.  X ) ) )  /\  ( ( ( R ( .r `  F ) R ) 
.x.  X )  =  ( R  .x.  ( R  .x.  X ) )  /\  ( ( 1r
`  F )  .x.  X )  =  X ) ) )
109simpld 459 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  R  e.  K )  /\  ( Y  e.  V  /\  X  e.  V
) )  ->  (
( R  .x.  X
)  e.  V  /\  ( R  .x.  ( X 
.+  Y ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  Y ) )  /\  ( ( R ( +g  `  F
) R )  .x.  X )  =  ( ( R  .x.  X
)  .+  ( R  .x.  X ) ) ) )
1110simp2d 1001 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  R  e.  K )  /\  ( Y  e.  V  /\  X  e.  V
) )  ->  ( R  .x.  ( X  .+  Y ) )  =  ( ( R  .x.  X )  .+  ( R  .x.  Y ) ) )
12113expia 1189 . . . . 5  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  R  e.  K )
)  ->  ( ( Y  e.  V  /\  X  e.  V )  ->  ( R  .x.  ( X  .+  Y ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  Y ) ) ) )
1312anabsan2 818 . . . 4  |-  ( ( W  e.  LMod  /\  R  e.  K )  ->  (
( Y  e.  V  /\  X  e.  V
)  ->  ( R  .x.  ( X  .+  Y
) )  =  ( ( R  .x.  X
)  .+  ( R  .x.  Y ) ) ) )
1413exp4b 607 . . 3  |-  ( W  e.  LMod  ->  ( R  e.  K  ->  ( Y  e.  V  ->  ( X  e.  V  -> 
( R  .x.  ( X  .+  Y ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  Y ) ) ) ) ) )
1514com34 83 . 2  |-  ( W  e.  LMod  ->  ( R  e.  K  ->  ( X  e.  V  ->  ( Y  e.  V  -> 
( R  .x.  ( X  .+  Y ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  Y ) ) ) ) ) )
16153imp2 1202 1  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( R  .x.  ( X  .+  Y
) )  =  ( ( R  .x.  X
)  .+  ( R  .x.  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ` cfv 5413  (class class class)co 6086   Basecbs 14166   +g cplusg 14230   .rcmulr 14231  Scalarcsca 14233   .scvsca 14234   1rcur 16591   LModclmod 16926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-nul 4416
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-iota 5376  df-fv 5421  df-ov 6089  df-lmod 16928
This theorem is referenced by:  lmodcom  16969  lmodsubdi  16980  lmodvsghm  16984  islss3  17017  prdslmodd  17027  lmodvsinv2  17095  lmhmplusg  17102  lsmcl  17141  pj1lmhm  17158  lspfixed  17186  lspsolvlem  17200  mendlmod  29503  lmodvsmdi  30751  lshpkrlem4  32598  baerlem5alem1  35193  baerlem5blem1  35194  hdmap14lem8  35363
  Copyright terms: Public domain W3C validator