MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvs0 Unicode version

Theorem lmodvs0 15939
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 22479 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvs0.f  |-  F  =  (Scalar `  W )
lmodvs0.s  |-  .x.  =  ( .s `  W )
lmodvs0.k  |-  K  =  ( Base `  F
)
lmodvs0.z  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
lmodvs0  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( X  .x.  .0.  )  =  .0.  )

Proof of Theorem lmodvs0
StepHypRef Expression
1 lmodvs0.f . . . . 5  |-  F  =  (Scalar `  W )
21lmodrng 15913 . . . 4  |-  ( W  e.  LMod  ->  F  e. 
Ring )
3 lmodvs0.k . . . . 5  |-  K  =  ( Base `  F
)
4 eqid 2404 . . . . 5  |-  ( .r
`  F )  =  ( .r `  F
)
5 eqid 2404 . . . . 5  |-  ( 0g
`  F )  =  ( 0g `  F
)
63, 4, 5rngrz 15656 . . . 4  |-  ( ( F  e.  Ring  /\  X  e.  K )  ->  ( X ( .r `  F ) ( 0g
`  F ) )  =  ( 0g `  F ) )
72, 6sylan 458 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( X ( .r `  F ) ( 0g
`  F ) )  =  ( 0g `  F ) )
87oveq1d 6055 . 2  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  (
( X ( .r
`  F ) ( 0g `  F ) )  .x.  .0.  )  =  ( ( 0g
`  F )  .x.  .0.  ) )
9 simpl 444 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  W  e.  LMod )
10 simpr 448 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  X  e.  K )
112adantr 452 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  F  e.  Ring )
123, 5rng0cl 15640 . . . . 5  |-  ( F  e.  Ring  ->  ( 0g
`  F )  e.  K )
1311, 12syl 16 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( 0g `  F )  e.  K )
14 eqid 2404 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
15 lmodvs0.z . . . . . 6  |-  .0.  =  ( 0g `  W )
1614, 15lmod0vcl 15934 . . . . 5  |-  ( W  e.  LMod  ->  .0.  e.  ( Base `  W )
)
1716adantr 452 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  .0.  e.  ( Base `  W
) )
18 lmodvs0.s . . . . 5  |-  .x.  =  ( .s `  W )
1914, 1, 18, 3, 4lmodvsass 15930 . . . 4  |-  ( ( W  e.  LMod  /\  ( X  e.  K  /\  ( 0g `  F )  e.  K  /\  .0.  e.  ( Base `  W
) ) )  -> 
( ( X ( .r `  F ) ( 0g `  F
) )  .x.  .0.  )  =  ( X  .x.  ( ( 0g `  F )  .x.  .0.  ) ) )
209, 10, 13, 17, 19syl13anc 1186 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  (
( X ( .r
`  F ) ( 0g `  F ) )  .x.  .0.  )  =  ( X  .x.  ( ( 0g `  F )  .x.  .0.  ) ) )
2114, 1, 18, 5, 15lmod0vs 15938 . . . . 5  |-  ( ( W  e.  LMod  /\  .0.  e.  ( Base `  W
) )  ->  (
( 0g `  F
)  .x.  .0.  )  =  .0.  )
2217, 21syldan 457 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  (
( 0g `  F
)  .x.  .0.  )  =  .0.  )
2322oveq2d 6056 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( X  .x.  ( ( 0g
`  F )  .x.  .0.  ) )  =  ( X  .x.  .0.  )
)
2420, 23eqtrd 2436 . 2  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  (
( X ( .r
`  F ) ( 0g `  F ) )  .x.  .0.  )  =  ( X  .x.  .0.  ) )
258, 24, 223eqtr3d 2444 1  |-  ( ( W  e.  LMod  /\  X  e.  K )  ->  ( X  .x.  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   ` cfv 5413  (class class class)co 6040   Basecbs 13424   .rcmulr 13485  Scalarcsca 13487   .scvsca 13488   0gc0g 13678   Ringcrg 15615   LModclmod 15905
This theorem is referenced by:  lsssn0  15979  lmodvsinv2  16068  0lmhm  16071  lvecvs0or  16135  dsmmlss  27078  lcdvs0N  32099  hdmap14lem13  32366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-plusg 13497  df-0g 13682  df-mnd 14645  df-grp 14767  df-mgp 15604  df-rng 15618  df-lmod 15907
  Copyright terms: Public domain W3C validator