MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubvs Structured version   Unicode version

Theorem lmodsubvs 17001
Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lmodsubvs.v  |-  V  =  ( Base `  W
)
lmodsubvs.p  |-  .+  =  ( +g  `  W )
lmodsubvs.m  |-  .-  =  ( -g `  W )
lmodsubvs.t  |-  .x.  =  ( .s `  W )
lmodsubvs.f  |-  F  =  (Scalar `  W )
lmodsubvs.k  |-  K  =  ( Base `  F
)
lmodsubvs.n  |-  N  =  ( invg `  F )
lmodsubvs.w  |-  ( ph  ->  W  e.  LMod )
lmodsubvs.a  |-  ( ph  ->  A  e.  K )
lmodsubvs.x  |-  ( ph  ->  X  e.  V )
lmodsubvs.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
lmodsubvs  |-  ( ph  ->  ( X  .-  ( A  .x.  Y ) )  =  ( X  .+  ( ( N `  A )  .x.  Y
) ) )

Proof of Theorem lmodsubvs
StepHypRef Expression
1 lmodsubvs.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 lmodsubvs.x . . 3  |-  ( ph  ->  X  e.  V )
3 lmodsubvs.a . . . 4  |-  ( ph  ->  A  e.  K )
4 lmodsubvs.y . . . 4  |-  ( ph  ->  Y  e.  V )
5 lmodsubvs.v . . . . 5  |-  V  =  ( Base `  W
)
6 lmodsubvs.f . . . . 5  |-  F  =  (Scalar `  W )
7 lmodsubvs.t . . . . 5  |-  .x.  =  ( .s `  W )
8 lmodsubvs.k . . . . 5  |-  K  =  ( Base `  F
)
95, 6, 7, 8lmodvscl 16965 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  Y  e.  V )  ->  ( A  .x.  Y )  e.  V )
101, 3, 4, 9syl3anc 1218 . . 3  |-  ( ph  ->  ( A  .x.  Y
)  e.  V )
11 lmodsubvs.p . . . 4  |-  .+  =  ( +g  `  W )
12 lmodsubvs.m . . . 4  |-  .-  =  ( -g `  W )
13 lmodsubvs.n . . . 4  |-  N  =  ( invg `  F )
14 eqid 2443 . . . 4  |-  ( 1r
`  F )  =  ( 1r `  F
)
155, 11, 12, 6, 7, 13, 14lmodvsubval2 17000 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  ( A  .x.  Y )  e.  V )  ->  ( X  .-  ( A  .x.  Y ) )  =  ( X  .+  (
( N `  ( 1r `  F ) ) 
.x.  ( A  .x.  Y ) ) ) )
161, 2, 10, 15syl3anc 1218 . 2  |-  ( ph  ->  ( X  .-  ( A  .x.  Y ) )  =  ( X  .+  ( ( N `  ( 1r `  F ) )  .x.  ( A 
.x.  Y ) ) ) )
176lmodrng 16956 . . . . . . . 8  |-  ( W  e.  LMod  ->  F  e. 
Ring )
181, 17syl 16 . . . . . . 7  |-  ( ph  ->  F  e.  Ring )
19 rnggrp 16650 . . . . . . 7  |-  ( F  e.  Ring  ->  F  e. 
Grp )
2018, 19syl 16 . . . . . 6  |-  ( ph  ->  F  e.  Grp )
218, 14rngidcl 16665 . . . . . . 7  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  K )
2218, 21syl 16 . . . . . 6  |-  ( ph  ->  ( 1r `  F
)  e.  K )
238, 13grpinvcl 15583 . . . . . 6  |-  ( ( F  e.  Grp  /\  ( 1r `  F )  e.  K )  -> 
( N `  ( 1r `  F ) )  e.  K )
2420, 22, 23syl2anc 661 . . . . 5  |-  ( ph  ->  ( N `  ( 1r `  F ) )  e.  K )
25 eqid 2443 . . . . . 6  |-  ( .r
`  F )  =  ( .r `  F
)
265, 6, 7, 8, 25lmodvsass 16973 . . . . 5  |-  ( ( W  e.  LMod  /\  (
( N `  ( 1r `  F ) )  e.  K  /\  A  e.  K  /\  Y  e.  V ) )  -> 
( ( ( N `
 ( 1r `  F ) ) ( .r `  F ) A )  .x.  Y
)  =  ( ( N `  ( 1r
`  F ) ) 
.x.  ( A  .x.  Y ) ) )
271, 24, 3, 4, 26syl13anc 1220 . . . 4  |-  ( ph  ->  ( ( ( N `
 ( 1r `  F ) ) ( .r `  F ) A )  .x.  Y
)  =  ( ( N `  ( 1r
`  F ) ) 
.x.  ( A  .x.  Y ) ) )
288, 25, 14, 13, 18, 3rngnegl 16685 . . . . 5  |-  ( ph  ->  ( ( N `  ( 1r `  F ) ) ( .r `  F ) A )  =  ( N `  A ) )
2928oveq1d 6106 . . . 4  |-  ( ph  ->  ( ( ( N `
 ( 1r `  F ) ) ( .r `  F ) A )  .x.  Y
)  =  ( ( N `  A ) 
.x.  Y ) )
3027, 29eqtr3d 2477 . . 3  |-  ( ph  ->  ( ( N `  ( 1r `  F ) )  .x.  ( A 
.x.  Y ) )  =  ( ( N `
 A )  .x.  Y ) )
3130oveq2d 6107 . 2  |-  ( ph  ->  ( X  .+  (
( N `  ( 1r `  F ) ) 
.x.  ( A  .x.  Y ) ) )  =  ( X  .+  ( ( N `  A )  .x.  Y
) ) )
3216, 31eqtrd 2475 1  |-  ( ph  ->  ( X  .-  ( A  .x.  Y ) )  =  ( X  .+  ( ( N `  A )  .x.  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   ` cfv 5418  (class class class)co 6091   Basecbs 14174   +g cplusg 14238   .rcmulr 14239  Scalarcsca 14241   .scvsca 14242   Grpcgrp 15410   invgcminusg 15411   -gcsg 15413   1rcur 16603   Ringcrg 16645   LModclmod 16948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-plusg 14251  df-0g 14380  df-mnd 15415  df-grp 15545  df-minusg 15546  df-sbg 15547  df-mgp 16592  df-ur 16604  df-rng 16647  df-lmod 16950
This theorem is referenced by:  lspexch  17210  baerlem5alem1  35353  baerlem5blem1  35354
  Copyright terms: Public domain W3C validator