MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubdir Structured version   Visualization version   Unicode version

Theorem lmodsubdir 18139
Description: Scalar multiplication distributive law for subtraction. (hvsubdistr2 26696 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdir.v  |-  V  =  ( Base `  W
)
lmodsubdir.t  |-  .x.  =  ( .s `  W )
lmodsubdir.f  |-  F  =  (Scalar `  W )
lmodsubdir.k  |-  K  =  ( Base `  F
)
lmodsubdir.m  |-  .-  =  ( -g `  W )
lmodsubdir.s  |-  S  =  ( -g `  F
)
lmodsubdir.w  |-  ( ph  ->  W  e.  LMod )
lmodsubdir.a  |-  ( ph  ->  A  e.  K )
lmodsubdir.b  |-  ( ph  ->  B  e.  K )
lmodsubdir.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
lmodsubdir  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A  .x.  X ) 
.-  ( B  .x.  X ) ) )

Proof of Theorem lmodsubdir
StepHypRef Expression
1 lmodsubdir.w . . . 4  |-  ( ph  ->  W  e.  LMod )
2 lmodsubdir.a . . . 4  |-  ( ph  ->  A  e.  K )
3 lmodsubdir.f . . . . . . . 8  |-  F  =  (Scalar `  W )
43lmodring 18092 . . . . . . 7  |-  ( W  e.  LMod  ->  F  e. 
Ring )
51, 4syl 17 . . . . . 6  |-  ( ph  ->  F  e.  Ring )
6 ringgrp 17778 . . . . . 6  |-  ( F  e.  Ring  ->  F  e. 
Grp )
75, 6syl 17 . . . . 5  |-  ( ph  ->  F  e.  Grp )
8 lmodsubdir.b . . . . 5  |-  ( ph  ->  B  e.  K )
9 lmodsubdir.k . . . . . 6  |-  K  =  ( Base `  F
)
10 eqid 2450 . . . . . 6  |-  ( invg `  F )  =  ( invg `  F )
119, 10grpinvcl 16704 . . . . 5  |-  ( ( F  e.  Grp  /\  B  e.  K )  ->  ( ( invg `  F ) `  B
)  e.  K )
127, 8, 11syl2anc 666 . . . 4  |-  ( ph  ->  ( ( invg `  F ) `  B
)  e.  K )
13 lmodsubdir.x . . . 4  |-  ( ph  ->  X  e.  V )
14 lmodsubdir.v . . . . 5  |-  V  =  ( Base `  W
)
15 eqid 2450 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
16 lmodsubdir.t . . . . 5  |-  .x.  =  ( .s `  W )
17 eqid 2450 . . . . 5  |-  ( +g  `  F )  =  ( +g  `  F )
1814, 15, 3, 16, 9, 17lmodvsdir 18108 . . . 4  |-  ( ( W  e.  LMod  /\  ( A  e.  K  /\  ( ( invg `  F ) `  B
)  e.  K  /\  X  e.  V )
)  ->  ( ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) 
.x.  X )  =  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  B
)  .x.  X )
) )
191, 2, 12, 13, 18syl13anc 1269 . . 3  |-  ( ph  ->  ( ( A ( +g  `  F ) ( ( invg `  F ) `  B
) )  .x.  X
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  B )  .x.  X ) ) )
20 eqid 2450 . . . . . . 7  |-  ( .r
`  F )  =  ( .r `  F
)
21 eqid 2450 . . . . . . 7  |-  ( 1r
`  F )  =  ( 1r `  F
)
229, 20, 21, 10, 5, 8ringnegl 17815 . . . . . 6  |-  ( ph  ->  ( ( ( invg `  F ) `
 ( 1r `  F ) ) ( .r `  F ) B )  =  ( ( invg `  F ) `  B
) )
2322oveq1d 6303 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  B
)  .x.  X )
)
249, 21ringidcl 17794 . . . . . . . 8  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  K )
255, 24syl 17 . . . . . . 7  |-  ( ph  ->  ( 1r `  F
)  e.  K )
269, 10grpinvcl 16704 . . . . . . 7  |-  ( ( F  e.  Grp  /\  ( 1r `  F )  e.  K )  -> 
( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
277, 25, 26syl2anc 666 . . . . . 6  |-  ( ph  ->  ( ( invg `  F ) `  ( 1r `  F ) )  e.  K )
2814, 3, 16, 9, 20lmodvsass 18109 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
( ( invg `  F ) `  ( 1r `  F ) )  e.  K  /\  B  e.  K  /\  X  e.  V ) )  -> 
( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
291, 27, 8, 13, 28syl13anc 1269 . . . . 5  |-  ( ph  ->  ( ( ( ( invg `  F
) `  ( 1r `  F ) ) ( .r `  F ) B )  .x.  X
)  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
3023, 29eqtr3d 2486 . . . 4  |-  ( ph  ->  ( ( ( invg `  F ) `
 B )  .x.  X )  =  ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) )
3130oveq2d 6304 . . 3  |-  ( ph  ->  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  B
)  .x.  X )
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
3219, 31eqtrd 2484 . 2  |-  ( ph  ->  ( ( A ( +g  `  F ) ( ( invg `  F ) `  B
) )  .x.  X
)  =  ( ( A  .x.  X ) ( +g  `  W
) ( ( ( invg `  F
) `  ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
33 lmodsubdir.s . . . . 5  |-  S  =  ( -g `  F
)
349, 17, 10, 33grpsubval 16702 . . . 4  |-  ( ( A  e.  K  /\  B  e.  K )  ->  ( A S B )  =  ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) )
352, 8, 34syl2anc 666 . . 3  |-  ( ph  ->  ( A S B )  =  ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) )
3635oveq1d 6303 . 2  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A ( +g  `  F
) ( ( invg `  F ) `
 B ) ) 
.x.  X ) )
3714, 3, 16, 9lmodvscl 18101 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  X  e.  V )  ->  ( A  .x.  X )  e.  V )
381, 2, 13, 37syl3anc 1267 . . 3  |-  ( ph  ->  ( A  .x.  X
)  e.  V )
3914, 3, 16, 9lmodvscl 18101 . . . 4  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  X  e.  V )  ->  ( B  .x.  X )  e.  V )
401, 8, 13, 39syl3anc 1267 . . 3  |-  ( ph  ->  ( B  .x.  X
)  e.  V )
41 lmodsubdir.m . . . 4  |-  .-  =  ( -g `  W )
4214, 15, 41, 3, 16, 10, 21lmodvsubval2 18136 . . 3  |-  ( ( W  e.  LMod  /\  ( A  .x.  X )  e.  V  /\  ( B 
.x.  X )  e.  V )  ->  (
( A  .x.  X
)  .-  ( B  .x.  X ) )  =  ( ( A  .x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `  ( 1r `  F ) ) 
.x.  ( B  .x.  X ) ) ) )
431, 38, 40, 42syl3anc 1267 . 2  |-  ( ph  ->  ( ( A  .x.  X )  .-  ( B  .x.  X ) )  =  ( ( A 
.x.  X ) ( +g  `  W ) ( ( ( invg `  F ) `
 ( 1r `  F ) )  .x.  ( B  .x.  X ) ) ) )
4432, 36, 433eqtr4d 2494 1  |-  ( ph  ->  ( ( A S B )  .x.  X
)  =  ( ( A  .x.  X ) 
.-  ( B  .x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1443    e. wcel 1886   ` cfv 5581  (class class class)co 6288   Basecbs 15114   +g cplusg 15183   .rcmulr 15184  Scalarcsca 15186   .scvsca 15187   Grpcgrp 16662   invgcminusg 16663   -gcsg 16664   1rcur 17728   Ringcrg 17773   LModclmod 18084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-nn 10607  df-2 10665  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-plusg 15196  df-0g 15333  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-grp 16666  df-minusg 16667  df-sbg 16668  df-mgp 17717  df-ur 17729  df-ring 17775  df-lmod 18086
This theorem is referenced by:  lvecvscan2  18328  scmatsubcl  19535  nlmdsdir  21678  clmsubdir  22118  ttgcontlem1  24908
  Copyright terms: Public domain W3C validator