Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1zr Structured version   Visualization version   Unicode version

Theorem lmod1zr 40794
Description: The (smallest) structure representing a zero module over a zero ring. (Contributed by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lmod1zr.r  |-  R  =  { <. ( Base `  ndx ) ,  { Z } >. ,  <. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. } >. , 
<. ( .r `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. }
lmod1zr.m  |-  M  =  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  { <. <. Z ,  I >. ,  I >. } >. } )
Assertion
Ref Expression
lmod1zr  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  M  e.  LMod )

Proof of Theorem lmod1zr
Dummy variables  a 
b  i  p  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmod1zr.m . . 3  |-  M  =  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  { <. <. Z ,  I >. ,  I >. } >. } )
2 elsni 3985 . . . . . . . . . . 11  |-  ( p  e.  { <. Z ,  I >. }  ->  p  =  <. Z ,  I >. )
3 fveq2 5879 . . . . . . . . . . . . 13  |-  ( p  =  <. Z ,  I >.  ->  ( 2nd `  p
)  =  ( 2nd `  <. Z ,  I >. ) )
43adantl 473 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  p  =  <. Z ,  I >. )  ->  ( 2nd `  p
)  =  ( 2nd `  <. Z ,  I >. ) )
5 op2ndg 6825 . . . . . . . . . . . . . . 15  |-  ( ( Z  e.  W  /\  I  e.  V )  ->  ( 2nd `  <. Z ,  I >. )  =  I )
65ancoms 460 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( 2nd `  <. Z ,  I >. )  =  I )
7 snidg 3986 . . . . . . . . . . . . . . 15  |-  ( I  e.  V  ->  I  e.  { I } )
87adantr 472 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  I  e.  { I } )
96, 8eqeltrd 2549 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( 2nd `  <. Z ,  I >. )  e.  { I } )
109adantr 472 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  p  =  <. Z ,  I >. )  ->  ( 2nd `  <. Z ,  I >. )  e.  { I } )
114, 10eqeltrd 2549 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  p  =  <. Z ,  I >. )  ->  ( 2nd `  p
)  e.  { I } )
122, 11sylan2 482 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  p  e.  {
<. Z ,  I >. } )  ->  ( 2nd `  p )  e.  {
I } )
13 eqid 2471 . . . . . . . . . 10  |-  ( p  e.  { <. Z ,  I >. }  |->  ( 2nd `  p ) )  =  ( p  e.  { <. Z ,  I >. } 
|->  ( 2nd `  p
) )
1412, 13fmptd 6061 . . . . . . . . 9  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( p  e.  { <. Z ,  I >. } 
|->  ( 2nd `  p
) ) : { <. Z ,  I >. } --> { I } )
15 opex 4664 . . . . . . . . . 10  |-  <. Z ,  I >.  e.  _V
16 simpl 464 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  I  e.  V )
17 fsng 6079 . . . . . . . . . 10  |-  ( (
<. Z ,  I >.  e. 
_V  /\  I  e.  V )  ->  (
( p  e.  { <. Z ,  I >. } 
|->  ( 2nd `  p
) ) : { <. Z ,  I >. } --> { I }  <->  ( p  e.  { <. Z ,  I >. }  |->  ( 2nd `  p
) )  =  { <. <. Z ,  I >. ,  I >. } ) )
1815, 16, 17sylancr 676 . . . . . . . . 9  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( ( p  e. 
{ <. Z ,  I >. }  |->  ( 2nd `  p
) ) : { <. Z ,  I >. } --> { I }  <->  ( p  e.  { <. Z ,  I >. }  |->  ( 2nd `  p
) )  =  { <. <. Z ,  I >. ,  I >. } ) )
1914, 18mpbid 215 . . . . . . . 8  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( p  e.  { <. Z ,  I >. } 
|->  ( 2nd `  p
) )  =  { <. <. Z ,  I >. ,  I >. } )
20 xpsng 6081 . . . . . . . . . . 11  |-  ( ( Z  e.  W  /\  I  e.  V )  ->  ( { Z }  X.  { I } )  =  { <. Z ,  I >. } )
2120ancoms 460 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( { Z }  X.  { I } )  =  { <. Z ,  I >. } )
2221eqcomd 2477 . . . . . . . . 9  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  { <. Z ,  I >. }  =  ( { Z }  X.  {
I } ) )
2322mpteq1d 4477 . . . . . . . 8  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( p  e.  { <. Z ,  I >. } 
|->  ( 2nd `  p
) )  =  ( p  e.  ( { Z }  X.  {
I } )  |->  ( 2nd `  p ) ) )
2419, 23eqtr3d 2507 . . . . . . 7  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  { <. <. Z ,  I >. ,  I >. }  =  ( p  e.  ( { Z }  X.  {
I } )  |->  ( 2nd `  p ) ) )
25 vex 3034 . . . . . . . . . 10  |-  z  e. 
_V
26 vex 3034 . . . . . . . . . 10  |-  i  e. 
_V
2725, 26op2ndd 6823 . . . . . . . . 9  |-  ( p  =  <. z ,  i
>.  ->  ( 2nd `  p
)  =  i )
2827mpt2mpt 6407 . . . . . . . 8  |-  ( p  e.  ( { Z }  X.  { I }
)  |->  ( 2nd `  p
) )  =  ( z  e.  { Z } ,  i  e.  { I }  |->  i )
2928a1i 11 . . . . . . 7  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( p  e.  ( { Z }  X.  { I } ) 
|->  ( 2nd `  p
) )  =  ( z  e.  { Z } ,  i  e.  { I }  |->  i ) )
30 snex 4641 . . . . . . . . 9  |-  { Z }  e.  _V
31 lmod1zr.r . . . . . . . . . 10  |-  R  =  { <. ( Base `  ndx ) ,  { Z } >. ,  <. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. } >. , 
<. ( .r `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. }
3231rngbase 15323 . . . . . . . . 9  |-  ( { Z }  e.  _V  ->  { Z }  =  ( Base `  R )
)
3330, 32mp1i 13 . . . . . . . 8  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  { Z }  =  ( Base `  R )
)
34 eqidd 2472 . . . . . . . 8  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  { I }  =  { I } )
35 mpt2eq12 6370 . . . . . . . 8  |-  ( ( { Z }  =  ( Base `  R )  /\  { I }  =  { I } )  ->  ( z  e. 
{ Z } , 
i  e.  { I }  |->  i )  =  ( z  e.  (
Base `  R ) ,  i  e.  { I }  |->  i ) )
3633, 34, 35syl2anc 673 . . . . . . 7  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( z  e.  { Z } ,  i  e. 
{ I }  |->  i )  =  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i ) )
3724, 29, 363eqtrd 2509 . . . . . 6  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  { <. <. Z ,  I >. ,  I >. }  =  ( z  e.  (
Base `  R ) ,  i  e.  { I }  |->  i ) )
3837opeq2d 4165 . . . . 5  |-  ( ( I  e.  V  /\  Z  e.  W )  -> 
<. ( .s `  ndx ) ,  { <. <. Z ,  I >. ,  I >. }
>.  =  <. ( .s
`  ndx ) ,  ( z  e.  ( Base `  R ) ,  i  e.  { I }  |->  i ) >. )
3938sneqd 3971 . . . 4  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  { <. ( .s `  ndx ) ,  { <. <. Z ,  I >. ,  I >. } >. }  =  { <. ( .s `  ndx ) ,  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i ) >. } )
4039uneq2d 3579 . . 3  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  { <. <. Z ,  I >. ,  I >. } >. } )  =  ( {
<. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. , 
<. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i ) >. } ) )
411, 40syl5eq 2517 . 2  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  M  =  ( {
<. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. , 
<. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i ) >. } ) )
4231ring1 17908 . . 3  |-  ( Z  e.  W  ->  R  e.  Ring )
43 eqidd 2472 . . . . . . . 8  |-  ( z  =  a  ->  i  =  i )
44 id 22 . . . . . . . 8  |-  ( i  =  b  ->  i  =  b )
4543, 44cbvmpt2v 6390 . . . . . . 7  |-  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i )  =  ( a  e.  ( Base `  R
) ,  b  e. 
{ I }  |->  b )
4645opeq2i 4162 . . . . . 6  |-  <. ( .s `  ndx ) ,  ( z  e.  (
Base `  R ) ,  i  e.  { I }  |->  i ) >.  =  <. ( .s `  ndx ) ,  ( a  e.  ( Base `  R
) ,  b  e. 
{ I }  |->  b ) >.
4746sneqi 3970 . . . . 5  |-  { <. ( .s `  ndx ) ,  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i ) >. }  =  { <. ( .s `  ndx ) ,  ( a  e.  ( Base `  R
) ,  b  e. 
{ I }  |->  b ) >. }
4847uneq2i 3576 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. , 
<. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i ) >. } )  =  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( a  e.  (
Base `  R ) ,  b  e.  { I }  |->  b ) >. } )
4948lmod1 40793 . . 3  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( z  e.  (
Base `  R ) ,  i  e.  { I }  |->  i ) >. } )  e.  LMod )
5042, 49sylan2 482 . 2  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( z  e.  (
Base `  R ) ,  i  e.  { I }  |->  i ) >. } )  e.  LMod )
5141, 50eqeltrd 2549 1  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  M  e.  LMod )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   _Vcvv 3031    u. cun 3388   {csn 3959   {ctp 3963   <.cop 3965    |-> cmpt 4454    X. cxp 4837   -->wf 5585   ` cfv 5589    |-> cmpt2 6310   2ndc2nd 6811   ndxcnx 15196   Basecbs 15199   +g cplusg 15268   .rcmulr 15269  Scalarcsca 15271   .scvsca 15272   Ringcrg 17858   LModclmod 18169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-plusg 15281  df-mulr 15282  df-sca 15284  df-vsca 15285  df-0g 15418  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-grp 16751  df-mgp 17802  df-ur 17814  df-ring 17860  df-lmod 18171
This theorem is referenced by:  lmodn0  40796  lvecpsslmod  40808
  Copyright terms: Public domain W3C validator