Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1zr Structured version   Unicode version

Theorem lmod1zr 31054
Description: The (smallest) structure representing a zero module over a zero ring. (Contributed by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lmod1zr.r  |-  R  =  { <. ( Base `  ndx ) ,  { Z } >. ,  <. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. } >. , 
<. ( .r `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. }
lmod1zr.m  |-  M  =  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  { <. <. Z ,  I >. ,  I >. } >. } )
Assertion
Ref Expression
lmod1zr  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  M  e.  LMod )

Proof of Theorem lmod1zr
Dummy variables  a 
b  i  p  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmod1zr.m . . 3  |-  M  =  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  { <. <. Z ,  I >. ,  I >. } >. } )
2 elsni 3917 . . . . . . . . . . 11  |-  ( p  e.  { <. Z ,  I >. }  ->  p  =  <. Z ,  I >. )
3 fveq2 5706 . . . . . . . . . . . . 13  |-  ( p  =  <. Z ,  I >.  ->  ( 2nd `  p
)  =  ( 2nd `  <. Z ,  I >. ) )
43adantl 466 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  p  =  <. Z ,  I >. )  ->  ( 2nd `  p
)  =  ( 2nd `  <. Z ,  I >. ) )
5 op2ndg 6605 . . . . . . . . . . . . . . 15  |-  ( ( Z  e.  W  /\  I  e.  V )  ->  ( 2nd `  <. Z ,  I >. )  =  I )
65ancoms 453 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( 2nd `  <. Z ,  I >. )  =  I )
7 snidg 3918 . . . . . . . . . . . . . . 15  |-  ( I  e.  V  ->  I  e.  { I } )
87adantr 465 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  I  e.  { I } )
96, 8eqeltrd 2517 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( 2nd `  <. Z ,  I >. )  e.  { I } )
109adantr 465 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  p  =  <. Z ,  I >. )  ->  ( 2nd `  <. Z ,  I >. )  e.  { I } )
114, 10eqeltrd 2517 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  p  =  <. Z ,  I >. )  ->  ( 2nd `  p
)  e.  { I } )
122, 11sylan2 474 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  Z  e.  W
)  /\  p  e.  {
<. Z ,  I >. } )  ->  ( 2nd `  p )  e.  {
I } )
13 eqid 2443 . . . . . . . . . 10  |-  ( p  e.  { <. Z ,  I >. }  |->  ( 2nd `  p ) )  =  ( p  e.  { <. Z ,  I >. } 
|->  ( 2nd `  p
) )
1412, 13fmptd 5882 . . . . . . . . 9  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( p  e.  { <. Z ,  I >. } 
|->  ( 2nd `  p
) ) : { <. Z ,  I >. } --> { I } )
15 opex 4571 . . . . . . . . . 10  |-  <. Z ,  I >.  e.  _V
16 simpl 457 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  I  e.  V )
17 fsng 5897 . . . . . . . . . 10  |-  ( (
<. Z ,  I >.  e. 
_V  /\  I  e.  V )  ->  (
( p  e.  { <. Z ,  I >. } 
|->  ( 2nd `  p
) ) : { <. Z ,  I >. } --> { I }  <->  ( p  e.  { <. Z ,  I >. }  |->  ( 2nd `  p
) )  =  { <. <. Z ,  I >. ,  I >. } ) )
1815, 16, 17sylancr 663 . . . . . . . . 9  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( ( p  e. 
{ <. Z ,  I >. }  |->  ( 2nd `  p
) ) : { <. Z ,  I >. } --> { I }  <->  ( p  e.  { <. Z ,  I >. }  |->  ( 2nd `  p
) )  =  { <. <. Z ,  I >. ,  I >. } ) )
1914, 18mpbid 210 . . . . . . . 8  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( p  e.  { <. Z ,  I >. } 
|->  ( 2nd `  p
) )  =  { <. <. Z ,  I >. ,  I >. } )
20 xpsng 5899 . . . . . . . . . . 11  |-  ( ( Z  e.  W  /\  I  e.  V )  ->  ( { Z }  X.  { I } )  =  { <. Z ,  I >. } )
2120ancoms 453 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( { Z }  X.  { I } )  =  { <. Z ,  I >. } )
2221eqcomd 2448 . . . . . . . . 9  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  { <. Z ,  I >. }  =  ( { Z }  X.  {
I } ) )
2322mpteq1d 4388 . . . . . . . 8  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( p  e.  { <. Z ,  I >. } 
|->  ( 2nd `  p
) )  =  ( p  e.  ( { Z }  X.  {
I } )  |->  ( 2nd `  p ) ) )
2419, 23eqtr3d 2477 . . . . . . 7  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  { <. <. Z ,  I >. ,  I >. }  =  ( p  e.  ( { Z }  X.  {
I } )  |->  ( 2nd `  p ) ) )
25 vex 2990 . . . . . . . . . 10  |-  z  e. 
_V
26 vex 2990 . . . . . . . . . 10  |-  i  e. 
_V
2725, 26op2ndd 6603 . . . . . . . . 9  |-  ( p  =  <. z ,  i
>.  ->  ( 2nd `  p
)  =  i )
2827mpt2mpt 6197 . . . . . . . 8  |-  ( p  e.  ( { Z }  X.  { I }
)  |->  ( 2nd `  p
) )  =  ( z  e.  { Z } ,  i  e.  { I }  |->  i )
2928a1i 11 . . . . . . 7  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( p  e.  ( { Z }  X.  { I } ) 
|->  ( 2nd `  p
) )  =  ( z  e.  { Z } ,  i  e.  { I }  |->  i ) )
30 snex 4548 . . . . . . . . 9  |-  { Z }  e.  _V
31 lmod1zr.r . . . . . . . . . 10  |-  R  =  { <. ( Base `  ndx ) ,  { Z } >. ,  <. ( +g  `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. } >. , 
<. ( .r `  ndx ) ,  { <. <. Z ,  Z >. ,  Z >. }
>. }
3231rngbase 14301 . . . . . . . . 9  |-  ( { Z }  e.  _V  ->  { Z }  =  ( Base `  R )
)
3330, 32mp1i 12 . . . . . . . 8  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  { Z }  =  ( Base `  R )
)
34 eqidd 2444 . . . . . . . 8  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  { I }  =  { I } )
35 mpt2eq12 6161 . . . . . . . 8  |-  ( ( { Z }  =  ( Base `  R )  /\  { I }  =  { I } )  ->  ( z  e. 
{ Z } , 
i  e.  { I }  |->  i )  =  ( z  e.  (
Base `  R ) ,  i  e.  { I }  |->  i ) )
3633, 34, 35syl2anc 661 . . . . . . 7  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( z  e.  { Z } ,  i  e. 
{ I }  |->  i )  =  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i ) )
3724, 29, 363eqtrd 2479 . . . . . 6  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  { <. <. Z ,  I >. ,  I >. }  =  ( z  e.  (
Base `  R ) ,  i  e.  { I }  |->  i ) )
3837opeq2d 4081 . . . . 5  |-  ( ( I  e.  V  /\  Z  e.  W )  -> 
<. ( .s `  ndx ) ,  { <. <. Z ,  I >. ,  I >. }
>.  =  <. ( .s
`  ndx ) ,  ( z  e.  ( Base `  R ) ,  i  e.  { I }  |->  i ) >. )
3938sneqd 3904 . . . 4  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  { <. ( .s `  ndx ) ,  { <. <. Z ,  I >. ,  I >. } >. }  =  { <. ( .s `  ndx ) ,  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i ) >. } )
4039uneq2d 3525 . . 3  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  { <. <. Z ,  I >. ,  I >. } >. } )  =  ( {
<. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. , 
<. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i ) >. } ) )
411, 40syl5eq 2487 . 2  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  M  =  ( {
<. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. , 
<. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i ) >. } ) )
4231rng1 31044 . . 3  |-  ( Z  e.  W  ->  R  e.  Ring )
43 eqidd 2444 . . . . . . . 8  |-  ( z  =  a  ->  i  =  i )
44 id 22 . . . . . . . 8  |-  ( i  =  b  ->  i  =  b )
4543, 44cbvmpt2v 6181 . . . . . . 7  |-  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i )  =  ( a  e.  ( Base `  R
) ,  b  e. 
{ I }  |->  b )
4645opeq2i 4078 . . . . . 6  |-  <. ( .s `  ndx ) ,  ( z  e.  (
Base `  R ) ,  i  e.  { I }  |->  i ) >.  =  <. ( .s `  ndx ) ,  ( a  e.  ( Base `  R
) ,  b  e. 
{ I }  |->  b ) >.
4746sneqi 3903 . . . . 5  |-  { <. ( .s `  ndx ) ,  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i ) >. }  =  { <. ( .s `  ndx ) ,  ( a  e.  ( Base `  R
) ,  b  e. 
{ I }  |->  b ) >. }
4847uneq2i 3522 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. , 
<. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( z  e.  ( Base `  R
) ,  i  e. 
{ I }  |->  i ) >. } )  =  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( a  e.  (
Base `  R ) ,  b  e.  { I }  |->  b ) >. } )
4948lmod1 31053 . . 3  |-  ( ( I  e.  V  /\  R  e.  Ring )  -> 
( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( z  e.  (
Base `  R ) ,  i  e.  { I }  |->  i ) >. } )  e.  LMod )
5042, 49sylan2 474 . 2  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( { <. ( Base `  ndx ) ,  { I } >. , 
<. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
>. ,  <. (Scalar `  ndx ) ,  R >. }  u.  { <. ( .s `  ndx ) ,  ( z  e.  (
Base `  R ) ,  i  e.  { I }  |->  i ) >. } )  e.  LMod )
5141, 50eqeltrd 2517 1  |-  ( ( I  e.  V  /\  Z  e.  W )  ->  M  e.  LMod )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2987    u. cun 3341   {csn 3892   {ctp 3896   <.cop 3898    e. cmpt 4365    X. cxp 4853   -->wf 5429   ` cfv 5433    e. cmpt2 6108   2ndc2nd 6591   ndxcnx 14186   Basecbs 14189   +g cplusg 14253   .rcmulr 14254  Scalarcsca 14256   .scvsca 14257   Ringcrg 16660   LModclmod 16963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-recs 6847  df-rdg 6881  df-1o 6935  df-oadd 6939  df-er 7116  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-nn 10338  df-2 10395  df-3 10396  df-4 10397  df-5 10398  df-6 10399  df-n0 10595  df-z 10662  df-uz 10877  df-fz 11453  df-struct 14191  df-ndx 14192  df-slot 14193  df-base 14194  df-sets 14195  df-plusg 14266  df-mulr 14267  df-sca 14269  df-vsca 14270  df-0g 14395  df-mnd 15430  df-grp 15560  df-mgp 16607  df-ur 16619  df-rng 16662  df-lmod 16965
This theorem is referenced by:  lmodn0  31056  lvecpsslmod  31068
  Copyright terms: Public domain W3C validator