MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmo Structured version   Unicode version

Theorem lmmo 19747
Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmo.1  |-  ( ph  ->  J  e.  Haus )
lmmo.4  |-  ( ph  ->  F ( ~~> t `  J ) A )
lmmo.5  |-  ( ph  ->  F ( ~~> t `  J ) B )
Assertion
Ref Expression
lmmo  |-  ( ph  ->  A  =  B )

Proof of Theorem lmmo
Dummy variables  j 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 822 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  J
)  /\  ( A  e.  x  /\  B  e.  y ) )  <->  ( (
x  e.  J  /\  A  e.  x )  /\  ( y  e.  J  /\  B  e.  y
) ) )
2 nnuz 11120 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
3 simprr 756 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  A  e.  x )
4 1zzd 10896 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  -> 
1  e.  ZZ )
5 lmmo.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  F ( ~~> t `  J ) A )
65adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  F ( ~~> t `  J ) A )
7 simprl 755 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  x  e.  J )
82, 3, 4, 6, 7lmcvg 19629 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  x )
98ex 434 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  J  /\  A  e.  x )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x ) )
10 simprr 756 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  B  e.  y )
11 1zzd 10896 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  -> 
1  e.  ZZ )
12 lmmo.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  F ( ~~> t `  J ) B )
1312adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  F ( ~~> t `  J ) B )
14 simprl 755 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  -> 
y  e.  J )
152, 10, 11, 13, 14lmcvg 19629 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y )
1615ex 434 . . . . . . . . . . 11  |-  ( ph  ->  ( ( y  e.  J  /\  B  e.  y )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  y ) )
179, 16anim12d 563 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( x  e.  J  /\  A  e.  x )  /\  (
y  e.  J  /\  B  e.  y )
)  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y ) ) )
182rexanuz2 13156 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y ) )
19 nnz 10887 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  j  e.  ZZ )
20 uzid 11099 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
21 ne0i 3773 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  j )  =/=  (/) )
2219, 20, 213syl 20 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  ( ZZ>=
`  j )  =/=  (/) )
23 r19.2z 3900 . . . . . . . . . . . . . 14  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )
24 elin 3669 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( x  i^i  y )  <->  ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y ) )
25 n0i 3772 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( x  i^i  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2624, 25sylbir 213 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  k
)  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2726rexlimivw 2930 . . . . . . . . . . . . . 14  |-  ( E. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2823, 27syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )  ->  -.  (
x  i^i  y )  =  (/) )
2922, 28sylan 471 . . . . . . . . . . . 12  |-  ( ( j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y ) )  ->  -.  ( x  i^i  y
)  =  (/) )
3029rexlimiva 2929 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
3118, 30sylbir 213 . . . . . . . . . 10  |-  ( ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  y )  ->  -.  ( x  i^i  y )  =  (/) )
3217, 31syl6 33 . . . . . . . . 9  |-  ( ph  ->  ( ( ( x  e.  J  /\  A  e.  x )  /\  (
y  e.  J  /\  B  e.  y )
)  ->  -.  (
x  i^i  y )  =  (/) ) )
331, 32syl5bi 217 . . . . . . . 8  |-  ( ph  ->  ( ( ( x  e.  J  /\  y  e.  J )  /\  ( A  e.  x  /\  B  e.  y )
)  ->  -.  (
x  i^i  y )  =  (/) ) )
3433expdimp 437 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( ( A  e.  x  /\  B  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) ) )
35 imnan 422 . . . . . . 7  |-  ( ( ( A  e.  x  /\  B  e.  y
)  ->  -.  (
x  i^i  y )  =  (/) )  <->  -.  (
( A  e.  x  /\  B  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )
3634, 35sylib 196 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  ->  -.  ( ( A  e.  x  /\  B  e.  y )  /\  (
x  i^i  y )  =  (/) ) )
37 df-3an 974 . . . . . 6  |-  ( ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) )  <->  ( ( A  e.  x  /\  B  e.  y )  /\  ( x  i^i  y
)  =  (/) ) )
3836, 37sylnibr 305 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  ->  -.  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
3938anassrs 648 . . . 4  |-  ( ( ( ph  /\  x  e.  J )  /\  y  e.  J )  ->  -.  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4039nrexdv 2897 . . 3  |-  ( (
ph  /\  x  e.  J )  ->  -.  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4140nrexdv 2897 . 2  |-  ( ph  ->  -.  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) ) )
42 lmmo.1 . . . 4  |-  ( ph  ->  J  e.  Haus )
43 haustop 19698 . . . . . . 7  |-  ( J  e.  Haus  ->  J  e. 
Top )
4442, 43syl 16 . . . . . 6  |-  ( ph  ->  J  e.  Top )
45 eqid 2441 . . . . . . 7  |-  U. J  =  U. J
4645toptopon 19301 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
4744, 46sylib 196 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
48 lmcl 19664 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) A )  ->  A  e.  U. J )
4947, 5, 48syl2anc 661 . . . 4  |-  ( ph  ->  A  e.  U. J
)
50 lmcl 19664 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) B )  ->  B  e.  U. J )
5147, 12, 50syl2anc 661 . . . 4  |-  ( ph  ->  B  e.  U. J
)
5245hausnei 19695 . . . . 5  |-  ( ( J  e.  Haus  /\  ( A  e.  U. J  /\  B  e.  U. J  /\  A  =/=  B ) )  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
53523exp2 1213 . . . 4  |-  ( J  e.  Haus  ->  ( A  e.  U. J  -> 
( B  e.  U. J  ->  ( A  =/= 
B  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) ) ) ) ) )
5442, 49, 51, 53syl3c 61 . . 3  |-  ( ph  ->  ( A  =/=  B  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) ) )
5554necon1bd 2659 . 2  |-  ( ph  ->  ( -.  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) )  ->  A  =  B ) )
5641, 55mpd 15 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   A.wral 2791   E.wrex 2792    i^i cin 3457   (/)c0 3767   U.cuni 4230   class class class wbr 4433   ` cfv 5574   1c1 9491   NNcn 10537   ZZcz 10865   ZZ>=cuz 11085   Topctop 19261  TopOnctopon 19262   ~~> tclm 19593   Hauscha 19675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-er 7309  df-pm 7421  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-nn 10538  df-z 10866  df-uz 11086  df-top 19266  df-topon 19269  df-lm 19596  df-haus 19682
This theorem is referenced by:  lmfun  19748  occllem  26086  nlelchi  26845  hmopidmchi  26935
  Copyright terms: Public domain W3C validator