MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmo Unicode version

Theorem lmmo 17398
Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmo.1  |-  ( ph  ->  J  e.  Haus )
lmmo.4  |-  ( ph  ->  F ( ~~> t `  J ) A )
lmmo.5  |-  ( ph  ->  F ( ~~> t `  J ) B )
Assertion
Ref Expression
lmmo  |-  ( ph  ->  A  =  B )

Proof of Theorem lmmo
Dummy variables  j 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 798 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  J
)  /\  ( A  e.  x  /\  B  e.  y ) )  <->  ( (
x  e.  J  /\  A  e.  x )  /\  ( y  e.  J  /\  B  e.  y
) ) )
2 nnuz 10477 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
3 simprr 734 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  A  e.  x )
4 1z 10267 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
54a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  -> 
1  e.  ZZ )
6 lmmo.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  F ( ~~> t `  J ) A )
76adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  F ( ~~> t `  J ) A )
8 simprl 733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  x  e.  J )
92, 3, 5, 7, 8lmcvg 17280 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  x )
109ex 424 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  J  /\  A  e.  x )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x ) )
11 simprr 734 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  B  e.  y )
124a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  -> 
1  e.  ZZ )
13 lmmo.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  F ( ~~> t `  J ) B )
1413adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  F ( ~~> t `  J ) B )
15 simprl 733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  -> 
y  e.  J )
162, 11, 12, 14, 15lmcvg 17280 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y )
1716ex 424 . . . . . . . . . . 11  |-  ( ph  ->  ( ( y  e.  J  /\  B  e.  y )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  y ) )
1810, 17anim12d 547 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( x  e.  J  /\  A  e.  x )  /\  (
y  e.  J  /\  B  e.  y )
)  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y ) ) )
192rexanuz2 12108 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y ) )
20 nnz 10259 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  j  e.  ZZ )
21 uzid 10456 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
22 ne0i 3594 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  j )  =/=  (/) )
2320, 21, 223syl 19 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  ( ZZ>=
`  j )  =/=  (/) )
24 r19.2z 3677 . . . . . . . . . . . . . 14  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )
25 elin 3490 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( x  i^i  y )  <->  ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y ) )
26 n0i 3593 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( x  i^i  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2725, 26sylbir 205 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  k
)  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2827rexlimivw 2786 . . . . . . . . . . . . . 14  |-  ( E. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2924, 28syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )  ->  -.  (
x  i^i  y )  =  (/) )
3023, 29sylan 458 . . . . . . . . . . . 12  |-  ( ( j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y ) )  ->  -.  ( x  i^i  y
)  =  (/) )
3130rexlimiva 2785 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
3219, 31sylbir 205 . . . . . . . . . 10  |-  ( ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  y )  ->  -.  ( x  i^i  y )  =  (/) )
3318, 32syl6 31 . . . . . . . . 9  |-  ( ph  ->  ( ( ( x  e.  J  /\  A  e.  x )  /\  (
y  e.  J  /\  B  e.  y )
)  ->  -.  (
x  i^i  y )  =  (/) ) )
341, 33syl5bi 209 . . . . . . . 8  |-  ( ph  ->  ( ( ( x  e.  J  /\  y  e.  J )  /\  ( A  e.  x  /\  B  e.  y )
)  ->  -.  (
x  i^i  y )  =  (/) ) )
3534expdimp 427 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( ( A  e.  x  /\  B  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) ) )
36 imnan 412 . . . . . . 7  |-  ( ( ( A  e.  x  /\  B  e.  y
)  ->  -.  (
x  i^i  y )  =  (/) )  <->  -.  (
( A  e.  x  /\  B  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )
3735, 36sylib 189 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  ->  -.  ( ( A  e.  x  /\  B  e.  y )  /\  (
x  i^i  y )  =  (/) ) )
38 df-3an 938 . . . . . 6  |-  ( ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) )  <->  ( ( A  e.  x  /\  B  e.  y )  /\  ( x  i^i  y
)  =  (/) ) )
3937, 38sylnibr 297 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  ->  -.  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4039anassrs 630 . . . 4  |-  ( ( ( ph  /\  x  e.  J )  /\  y  e.  J )  ->  -.  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4140nrexdv 2769 . . 3  |-  ( (
ph  /\  x  e.  J )  ->  -.  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4241nrexdv 2769 . 2  |-  ( ph  ->  -.  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) ) )
43 lmmo.1 . . . 4  |-  ( ph  ->  J  e.  Haus )
44 haustop 17349 . . . . . . 7  |-  ( J  e.  Haus  ->  J  e. 
Top )
4543, 44syl 16 . . . . . 6  |-  ( ph  ->  J  e.  Top )
46 eqid 2404 . . . . . . 7  |-  U. J  =  U. J
4746toptopon 16953 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
4845, 47sylib 189 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
49 lmcl 17315 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) A )  ->  A  e.  U. J )
5048, 6, 49syl2anc 643 . . . 4  |-  ( ph  ->  A  e.  U. J
)
51 lmcl 17315 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) B )  ->  B  e.  U. J )
5248, 13, 51syl2anc 643 . . . 4  |-  ( ph  ->  B  e.  U. J
)
5346hausnei 17346 . . . . 5  |-  ( ( J  e.  Haus  /\  ( A  e.  U. J  /\  B  e.  U. J  /\  A  =/=  B ) )  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
54533exp2 1171 . . . 4  |-  ( J  e.  Haus  ->  ( A  e.  U. J  -> 
( B  e.  U. J  ->  ( A  =/= 
B  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) ) ) ) ) )
5543, 50, 52, 54syl3c 59 . . 3  |-  ( ph  ->  ( A  =/=  B  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) ) )
5655necon1bd 2635 . 2  |-  ( ph  ->  ( -.  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) )  ->  A  =  B ) )
5742, 56mpd 15 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667    i^i cin 3279   (/)c0 3588   U.cuni 3975   class class class wbr 4172   ` cfv 5413   1c1 8947   NNcn 9956   ZZcz 10238   ZZ>=cuz 10444   Topctop 16913  TopOnctopon 16914   ~~> tclm 17244   Hauscha 17326
This theorem is referenced by:  lmfun  17399  occllem  22758  nlelchi  23517  hmopidmchi  23607
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-z 10239  df-uz 10445  df-top 16918  df-topon 16921  df-lm 17247  df-haus 17333
  Copyright terms: Public domain W3C validator