MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmo Structured version   Unicode version

Theorem lmmo 18884
Description: A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmo.1  |-  ( ph  ->  J  e.  Haus )
lmmo.4  |-  ( ph  ->  F ( ~~> t `  J ) A )
lmmo.5  |-  ( ph  ->  F ( ~~> t `  J ) B )
Assertion
Ref Expression
lmmo  |-  ( ph  ->  A  =  B )

Proof of Theorem lmmo
Dummy variables  j 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 815 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  J
)  /\  ( A  e.  x  /\  B  e.  y ) )  <->  ( (
x  e.  J  /\  A  e.  x )  /\  ( y  e.  J  /\  B  e.  y
) ) )
2 nnuz 10892 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
3 simprr 751 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  A  e.  x )
4 1zzd 10673 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  -> 
1  e.  ZZ )
5 lmmo.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  F ( ~~> t `  J ) A )
65adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  F ( ~~> t `  J ) A )
7 simprl 750 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  x  e.  J )
82, 3, 4, 6, 7lmcvg 18766 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  J  /\  A  e.  x ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  x )
98ex 434 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  J  /\  A  e.  x )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x ) )
10 simprr 751 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  B  e.  y )
11 1zzd 10673 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  -> 
1  e.  ZZ )
12 lmmo.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  F ( ~~> t `  J ) B )
1312adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  F ( ~~> t `  J ) B )
14 simprl 750 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  -> 
y  e.  J )
152, 10, 11, 13, 14lmcvg 18766 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  J  /\  B  e.  y ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y )
1615ex 434 . . . . . . . . . . 11  |-  ( ph  ->  ( ( y  e.  J  /\  B  e.  y )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  y ) )
179, 16anim12d 560 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( x  e.  J  /\  A  e.  x )  /\  (
y  e.  J  /\  B  e.  y )
)  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y ) ) )
182rexanuz2 12833 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  y ) )
19 nnz 10664 . . . . . . . . . . . . . 14  |-  ( j  e.  NN  ->  j  e.  ZZ )
20 uzid 10871 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
21 ne0i 3640 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  j )  =/=  (/) )
2219, 20, 213syl 20 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  ( ZZ>=
`  j )  =/=  (/) )
23 r19.2z 3766 . . . . . . . . . . . . . 14  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )
24 elin 3536 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( x  i^i  y )  <->  ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y ) )
25 n0i 3639 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( x  i^i  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2624, 25sylbir 213 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  k
)  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2726rexlimivw 2835 . . . . . . . . . . . . . 14  |-  ( E. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
2823, 27syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  x  /\  ( F `  k
)  e.  y ) )  ->  -.  (
x  i^i  y )  =  (/) )
2922, 28sylan 468 . . . . . . . . . . . 12  |-  ( ( j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y ) )  ->  -.  ( x  i^i  y
)  =  (/) )
3029rexlimiva 2834 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  x  /\  ( F `  k )  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) )
3118, 30sylbir 213 . . . . . . . . . 10  |-  ( ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  x  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  y )  ->  -.  ( x  i^i  y )  =  (/) )
3217, 31syl6 33 . . . . . . . . 9  |-  ( ph  ->  ( ( ( x  e.  J  /\  A  e.  x )  /\  (
y  e.  J  /\  B  e.  y )
)  ->  -.  (
x  i^i  y )  =  (/) ) )
331, 32syl5bi 217 . . . . . . . 8  |-  ( ph  ->  ( ( ( x  e.  J  /\  y  e.  J )  /\  ( A  e.  x  /\  B  e.  y )
)  ->  -.  (
x  i^i  y )  =  (/) ) )
3433expdimp 437 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( ( A  e.  x  /\  B  e.  y )  ->  -.  ( x  i^i  y
)  =  (/) ) )
35 imnan 422 . . . . . . 7  |-  ( ( ( A  e.  x  /\  B  e.  y
)  ->  -.  (
x  i^i  y )  =  (/) )  <->  -.  (
( A  e.  x  /\  B  e.  y
)  /\  ( x  i^i  y )  =  (/) ) )
3634, 35sylib 196 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  ->  -.  ( ( A  e.  x  /\  B  e.  y )  /\  (
x  i^i  y )  =  (/) ) )
37 df-3an 962 . . . . . 6  |-  ( ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) )  <->  ( ( A  e.  x  /\  B  e.  y )  /\  ( x  i^i  y
)  =  (/) ) )
3836, 37sylnibr 305 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  J ) )  ->  -.  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
3938anassrs 643 . . . 4  |-  ( ( ( ph  /\  x  e.  J )  /\  y  e.  J )  ->  -.  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4039nrexdv 2817 . . 3  |-  ( (
ph  /\  x  e.  J )  ->  -.  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
4140nrexdv 2817 . 2  |-  ( ph  ->  -.  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) ) )
42 lmmo.1 . . . 4  |-  ( ph  ->  J  e.  Haus )
43 haustop 18835 . . . . . . 7  |-  ( J  e.  Haus  ->  J  e. 
Top )
4442, 43syl 16 . . . . . 6  |-  ( ph  ->  J  e.  Top )
45 eqid 2441 . . . . . . 7  |-  U. J  =  U. J
4645toptopon 18438 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
4744, 46sylib 196 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
48 lmcl 18801 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) A )  ->  A  e.  U. J )
4947, 5, 48syl2anc 656 . . . 4  |-  ( ph  ->  A  e.  U. J
)
50 lmcl 18801 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) B )  ->  B  e.  U. J )
5147, 12, 50syl2anc 656 . . . 4  |-  ( ph  ->  B  e.  U. J
)
5245hausnei 18832 . . . . 5  |-  ( ( J  e.  Haus  /\  ( A  e.  U. J  /\  B  e.  U. J  /\  A  =/=  B ) )  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) )
53523exp2 1200 . . . 4  |-  ( J  e.  Haus  ->  ( A  e.  U. J  -> 
( B  e.  U. J  ->  ( A  =/= 
B  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) ) ) ) ) )
5442, 49, 51, 53syl3c 61 . . 3  |-  ( ph  ->  ( A  =/=  B  ->  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y
)  =  (/) ) ) )
5554necon1bd 2677 . 2  |-  ( ph  ->  ( -.  E. x  e.  J  E. y  e.  J  ( A  e.  x  /\  B  e.  y  /\  ( x  i^i  y )  =  (/) )  ->  A  =  B ) )
5641, 55mpd 15 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714    i^i cin 3324   (/)c0 3634   U.cuni 4088   class class class wbr 4289   ` cfv 5415   1c1 9279   NNcn 10318   ZZcz 10642   ZZ>=cuz 10857   Topctop 18398  TopOnctopon 18399   ~~> tclm 18730   Hauscha 18812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-z 10643  df-uz 10858  df-top 18403  df-topon 18406  df-lm 18733  df-haus 18819
This theorem is referenced by:  lmfun  18885  occllem  24625  nlelchi  25384  hmopidmchi  25474
  Copyright terms: Public domain W3C validator