MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr2 Structured version   Unicode version

Theorem lmmbr2 21571
Description: Express the binary relation "sequence  F converges to point  P " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition  F  C_  ( CC  X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 19603. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2  |-  J  =  ( MetOpen `  D )
lmmbr.3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
Assertion
Ref Expression
lmmbr2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
Distinct variable groups:    j, k, x, D    j, F, k, x    P, j, k, x   
j, X, k, x   
x, J    ph, j, k, x
Allowed substitution hints:    J( j, k)

Proof of Theorem lmmbr2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lmmbr.2 . . 3  |-  J  =  ( MetOpen `  D )
2 lmmbr.3 . . 3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
31, 2lmmbr 21570 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) ) )
4 df-3an 976 . . . 4  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e. 
ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) ) )
5 uzf 11093 . . . . . . . . . 10  |-  ZZ>= : ZZ --> ~P ZZ
6 ffn 5721 . . . . . . . . . 10  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
7 reseq2 5258 . . . . . . . . . . . 12  |-  ( y  =  ( ZZ>= `  j
)  ->  ( F  |`  y )  =  ( F  |`  ( ZZ>= `  j ) ) )
8 id 22 . . . . . . . . . . . 12  |-  ( y  =  ( ZZ>= `  j
)  ->  y  =  ( ZZ>= `  j )
)
97, 8feq12d 5710 . . . . . . . . . . 11  |-  ( y  =  ( ZZ>= `  j
)  ->  ( ( F  |`  y ) : y --> ( P (
ball `  D )
x )  <->  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) ) )
109rexrn 6018 . . . . . . . . . 10  |-  ( ZZ>=  Fn  ZZ  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) ) )
115, 6, 10mp2b 10 . . . . . . . . 9  |-  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) )
12 simp2l 1023 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  F  e.  ( X  ^pm  CC ) )
13 elfvdm 5882 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
14133ad2ant1 1018 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  X  e.  dom  *Met )
15 cnex 9576 . . . . . . . . . . . . . . 15  |-  CC  e.  _V
16 elpmg 7436 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  dom  *Met  /\  CC  e.  _V )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
1714, 15, 16sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
1812, 17mpbid 210 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) )
1918simpld 459 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  Fun  F )
20 ffvresb 6047 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( P ( ball `  D
) x ) ) ) )
2119, 20syl 16 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( P ( ball `  D
) x ) ) ) )
22 rpxr 11236 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  x  e. 
RR* )
23 elbl 20764 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR* )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  ( P D ( F `  k ) )  < 
x ) ) )
2422, 23syl3an3 1264 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  ( P D ( F `  k ) )  < 
x ) ) )
25 xmetsym 20723 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  ( F `  k
)  e.  X )  ->  ( P D ( F `  k
) )  =  ( ( F `  k
) D P ) )
2625breq1d 4447 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  ( F `  k
)  e.  X )  ->  ( ( P D ( F `  k ) )  < 
x  <->  ( ( F `
 k ) D P )  <  x
) )
27263expa 1197 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( F `  k )  e.  X )  ->  (
( P D ( F `  k ) )  <  x  <->  ( ( F `  k ) D P )  <  x
) )
2827pm5.32da 641 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( (
( F `  k
)  e.  X  /\  ( P D ( F `
 k ) )  <  x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
29283adant3 1017 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( ( F `
 k )  e.  X  /\  ( P D ( F `  k ) )  < 
x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
3024, 29bitrd 253 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
31303adant2l 1223 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D ) x )  <-> 
( ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3231anbi2d 703 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  ( P ( ball `  D
) x ) )  <-> 
( k  e.  dom  F  /\  ( ( F `
 k )  e.  X  /\  ( ( F `  k ) D P )  < 
x ) ) ) )
33 3anass 978 . . . . . . . . . . . . 13  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D P )  <  x )  <-> 
( k  e.  dom  F  /\  ( ( F `
 k )  e.  X  /\  ( ( F `  k ) D P )  < 
x ) ) )
3432, 33syl6bbr 263 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  ( P ( ball `  D
) x ) )  <-> 
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3534ralbidv 2882 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  ( P (
ball `  D )
x ) )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3621, 35bitrd 253 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3736rexbidv 2954 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3811, 37syl5bb 257 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
39383expa 1197 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  /\  x  e.  RR+ )  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4039ralbidva 2879 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4140pm5.32da 641 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. x  e.  RR+  E. y  e. 
ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
422, 41syl 16 . . . 4  |-  ( ph  ->  ( ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
434, 42syl5bb 257 . . 3  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) )  <-> 
( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
44 df-3an 976 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4543, 44syl6bbr 263 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
463, 45bitrd 253 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   E.wrex 2794   _Vcvv 3095    C_ wss 3461   ~Pcpw 3997   class class class wbr 4437    X. cxp 4987   dom cdm 4989   ran crn 4990    |` cres 4991   Fun wfun 5572    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281    ^pm cpm 7423   CCcc 9493   RR*cxr 9630    < clt 9631   ZZcz 10870   ZZ>=cuz 11090   RR+crp 11229   *Metcxmt 18277   ballcbl 18279   MetOpencmopn 18282   ~~> tclm 19600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-sup 7903  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-n0 10802  df-z 10871  df-uz 11091  df-q 11192  df-rp 11230  df-xneg 11327  df-xadd 11328  df-xmul 11329  df-topgen 14718  df-psmet 18285  df-xmet 18286  df-bl 18288  df-mopn 18289  df-top 19272  df-bases 19274  df-topon 19275  df-lm 19603
This theorem is referenced by:  lmmbr3  21572
  Copyright terms: Public domain W3C validator