MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr2 Structured version   Unicode version

Theorem lmmbr2 20745
Description: Express the binary relation "sequence  F converges to point  P " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition  F  C_  ( CC  X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 18808. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2  |-  J  =  ( MetOpen `  D )
lmmbr.3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
Assertion
Ref Expression
lmmbr2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
Distinct variable groups:    j, k, x, D    j, F, k, x    P, j, k, x   
j, X, k, x   
x, J    ph, j, k, x
Allowed substitution hints:    J( j, k)

Proof of Theorem lmmbr2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lmmbr.2 . . 3  |-  J  =  ( MetOpen `  D )
2 lmmbr.3 . . 3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
31, 2lmmbr 20744 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) ) )
4 df-3an 967 . . . 4  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e. 
ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) ) )
5 uzf 10856 . . . . . . . . . 10  |-  ZZ>= : ZZ --> ~P ZZ
6 ffn 5554 . . . . . . . . . 10  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
7 reseq2 5100 . . . . . . . . . . . 12  |-  ( y  =  ( ZZ>= `  j
)  ->  ( F  |`  y )  =  ( F  |`  ( ZZ>= `  j ) ) )
8 id 22 . . . . . . . . . . . 12  |-  ( y  =  ( ZZ>= `  j
)  ->  y  =  ( ZZ>= `  j )
)
97, 8feq12d 5543 . . . . . . . . . . 11  |-  ( y  =  ( ZZ>= `  j
)  ->  ( ( F  |`  y ) : y --> ( P (
ball `  D )
x )  <->  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) ) )
109rexrn 5840 . . . . . . . . . 10  |-  ( ZZ>=  Fn  ZZ  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) ) )
115, 6, 10mp2b 10 . . . . . . . . 9  |-  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) )
12 simp2l 1014 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  F  e.  ( X  ^pm  CC ) )
13 elfvdm 5711 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
14133ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  X  e.  dom  *Met )
15 cnex 9355 . . . . . . . . . . . . . . 15  |-  CC  e.  _V
16 elpmg 7220 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  dom  *Met  /\  CC  e.  _V )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
1714, 15, 16sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
1812, 17mpbid 210 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) )
1918simpld 459 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  Fun  F )
20 ffvresb 5869 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( P ( ball `  D
) x ) ) ) )
2119, 20syl 16 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( P ( ball `  D
) x ) ) ) )
22 rpxr 10990 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  x  e. 
RR* )
23 elbl 19938 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR* )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  ( P D ( F `  k ) )  < 
x ) ) )
2422, 23syl3an3 1253 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  ( P D ( F `  k ) )  < 
x ) ) )
25 xmetsym 19897 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  ( F `  k
)  e.  X )  ->  ( P D ( F `  k
) )  =  ( ( F `  k
) D P ) )
2625breq1d 4297 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  ( F `  k
)  e.  X )  ->  ( ( P D ( F `  k ) )  < 
x  <->  ( ( F `
 k ) D P )  <  x
) )
27263expa 1187 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( F `  k )  e.  X )  ->  (
( P D ( F `  k ) )  <  x  <->  ( ( F `  k ) D P )  <  x
) )
2827pm5.32da 641 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( (
( F `  k
)  e.  X  /\  ( P D ( F `
 k ) )  <  x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
29283adant3 1008 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( ( F `
 k )  e.  X  /\  ( P D ( F `  k ) )  < 
x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
3024, 29bitrd 253 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
31303adant2l 1212 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D ) x )  <-> 
( ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3231anbi2d 703 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  ( P ( ball `  D
) x ) )  <-> 
( k  e.  dom  F  /\  ( ( F `
 k )  e.  X  /\  ( ( F `  k ) D P )  < 
x ) ) ) )
33 3anass 969 . . . . . . . . . . . . 13  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D P )  <  x )  <-> 
( k  e.  dom  F  /\  ( ( F `
 k )  e.  X  /\  ( ( F `  k ) D P )  < 
x ) ) )
3432, 33syl6bbr 263 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  ( P ( ball `  D
) x ) )  <-> 
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3534ralbidv 2730 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  ( P (
ball `  D )
x ) )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3621, 35bitrd 253 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3736rexbidv 2731 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3811, 37syl5bb 257 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
39383expa 1187 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  /\  x  e.  RR+ )  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4039ralbidva 2726 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4140pm5.32da 641 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. x  e.  RR+  E. y  e. 
ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
422, 41syl 16 . . . 4  |-  ( ph  ->  ( ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
434, 42syl5bb 257 . . 3  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) )  <-> 
( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
44 df-3an 967 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4543, 44syl6bbr 263 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
463, 45bitrd 253 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   E.wrex 2711   _Vcvv 2967    C_ wss 3323   ~Pcpw 3855   class class class wbr 4287    X. cxp 4833   dom cdm 4835   ran crn 4836    |` cres 4837   Fun wfun 5407    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6086    ^pm cpm 7207   CCcc 9272   RR*cxr 9409    < clt 9410   ZZcz 10638   ZZ>=cuz 10853   RR+crp 10983   *Metcxmt 17776   ballcbl 17778   MetOpencmopn 17781   ~~> tclm 18805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-topgen 14374  df-psmet 17784  df-xmet 17785  df-bl 17787  df-mopn 17788  df-top 18478  df-bases 18480  df-topon 18481  df-lm 18808
This theorem is referenced by:  lmmbr3  20746
  Copyright terms: Public domain W3C validator