MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr2 Structured version   Unicode version

Theorem lmmbr2 20905
Description: Express the binary relation "sequence  F converges to point  P " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition  F  C_  ( CC  X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 18968. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2  |-  J  =  ( MetOpen `  D )
lmmbr.3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
Assertion
Ref Expression
lmmbr2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
Distinct variable groups:    j, k, x, D    j, F, k, x    P, j, k, x   
j, X, k, x   
x, J    ph, j, k, x
Allowed substitution hints:    J( j, k)

Proof of Theorem lmmbr2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lmmbr.2 . . 3  |-  J  =  ( MetOpen `  D )
2 lmmbr.3 . . 3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
31, 2lmmbr 20904 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) ) )
4 df-3an 967 . . . 4  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e. 
ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) ) )
5 uzf 10978 . . . . . . . . . 10  |-  ZZ>= : ZZ --> ~P ZZ
6 ffn 5670 . . . . . . . . . 10  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
7 reseq2 5216 . . . . . . . . . . . 12  |-  ( y  =  ( ZZ>= `  j
)  ->  ( F  |`  y )  =  ( F  |`  ( ZZ>= `  j ) ) )
8 id 22 . . . . . . . . . . . 12  |-  ( y  =  ( ZZ>= `  j
)  ->  y  =  ( ZZ>= `  j )
)
97, 8feq12d 5659 . . . . . . . . . . 11  |-  ( y  =  ( ZZ>= `  j
)  ->  ( ( F  |`  y ) : y --> ( P (
ball `  D )
x )  <->  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) ) )
109rexrn 5957 . . . . . . . . . 10  |-  ( ZZ>=  Fn  ZZ  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) ) )
115, 6, 10mp2b 10 . . . . . . . . 9  |-  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( P ( ball `  D
) x ) )
12 simp2l 1014 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  F  e.  ( X  ^pm  CC ) )
13 elfvdm 5828 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
14133ad2ant1 1009 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  X  e.  dom  *Met )
15 cnex 9477 . . . . . . . . . . . . . . 15  |-  CC  e.  _V
16 elpmg 7341 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  dom  *Met  /\  CC  e.  _V )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
1714, 15, 16sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
1812, 17mpbid 210 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) )
1918simpld 459 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  Fun  F )
20 ffvresb 5986 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( P ( ball `  D
) x ) ) ) )
2119, 20syl 16 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( P ( ball `  D
) x ) ) ) )
22 rpxr 11112 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  x  e. 
RR* )
23 elbl 20098 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR* )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  ( P D ( F `  k ) )  < 
x ) ) )
2422, 23syl3an3 1254 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  ( P D ( F `  k ) )  < 
x ) ) )
25 xmetsym 20057 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  ( F `  k
)  e.  X )  ->  ( P D ( F `  k
) )  =  ( ( F `  k
) D P ) )
2625breq1d 4413 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  ( F `  k
)  e.  X )  ->  ( ( P D ( F `  k ) )  < 
x  <->  ( ( F `
 k ) D P )  <  x
) )
27263expa 1188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( F `  k )  e.  X )  ->  (
( P D ( F `  k ) )  <  x  <->  ( ( F `  k ) D P )  <  x
) )
2827pm5.32da 641 . . . . . . . . . . . . . . . . 17  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( (
( F `  k
)  e.  X  /\  ( P D ( F `
 k ) )  <  x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
29283adant3 1008 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( ( F `
 k )  e.  X  /\  ( P D ( F `  k ) )  < 
x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
3024, 29bitrd 253 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
31303adant2l 1213 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( P ( ball `  D ) x )  <-> 
( ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3231anbi2d 703 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  ( P ( ball `  D
) x ) )  <-> 
( k  e.  dom  F  /\  ( ( F `
 k )  e.  X  /\  ( ( F `  k ) D P )  < 
x ) ) ) )
33 3anass 969 . . . . . . . . . . . . 13  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D P )  <  x )  <-> 
( k  e.  dom  F  /\  ( ( F `
 k )  e.  X  /\  ( ( F `  k ) D P )  < 
x ) ) )
3432, 33syl6bbr 263 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  ( P ( ball `  D
) x ) )  <-> 
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3534ralbidv 2846 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  ( P (
ball `  D )
x ) )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3621, 35bitrd 253 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3736rexbidv 2868 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
3811, 37syl5bb 257 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  x  e.  RR+ )  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) )
39383expa 1188 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  /\  x  e.  RR+ )  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4039ralbidva 2844 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4140pm5.32da 641 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. x  e.  RR+  E. y  e. 
ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
422, 41syl 16 . . . 4  |-  ( ph  ->  ( ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
434, 42syl5bb 257 . . 3  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) )  <-> 
( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) ) )
44 df-3an 967 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D P )  <  x ) ) )
4543, 44syl6bbr 263 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
463, 45bitrd 253 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D P )  <  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   E.wrex 2800   _Vcvv 3078    C_ wss 3439   ~Pcpw 3971   class class class wbr 4403    X. cxp 4949   dom cdm 4951   ran crn 4952    |` cres 4953   Fun wfun 5523    Fn wfn 5524   -->wf 5525   ` cfv 5529  (class class class)co 6203    ^pm cpm 7328   CCcc 9394   RR*cxr 9531    < clt 9532   ZZcz 10760   ZZ>=cuz 10975   RR+crp 11105   *Metcxmt 17929   ballcbl 17931   MetOpencmopn 17934   ~~> tclm 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-map 7329  df-pm 7330  df-en 7424  df-dom 7425  df-sdom 7426  df-sup 7805  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-n0 10694  df-z 10761  df-uz 10976  df-q 11068  df-rp 11106  df-xneg 11203  df-xadd 11204  df-xmul 11205  df-topgen 14504  df-psmet 17937  df-xmet 17938  df-bl 17940  df-mopn 17941  df-top 18638  df-bases 18640  df-topon 18641  df-lm 18968
This theorem is referenced by:  lmmbr3  20906
  Copyright terms: Public domain W3C validator