MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr Structured version   Unicode version

Theorem lmmbr 20781
Description: Express the binary relation "sequence  F converges to point  P " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition  F  C_  ( CC  X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 18845. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2  |-  J  =  ( MetOpen `  D )
lmmbr.3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
Assertion
Ref Expression
lmmbr  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) ) )
Distinct variable groups:    x, y, D    x, F, y    x, P, y    x, X, y   
x, J, y    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem lmmbr
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 lmmbr.3 . . . 4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
2 lmmbr.2 . . . . 5  |-  J  =  ( MetOpen `  D )
32mopntopon 20026 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
41, 3syl 16 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
54lmbr 18874 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
6 rpxr 11010 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e. 
RR* )
72blopn 20087 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR* )  ->  ( P ( ball `  D ) x )  e.  J )
86, 7syl3an3 1253 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( P ( ball `  D ) x )  e.  J )
9 blcntr 20000 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  P  e.  ( P ( ball `  D
) x ) )
10 eleq2 2504 . . . . . . . . . . . . . 14  |-  ( u  =  ( P (
ball `  D )
x )  ->  ( P  e.  u  <->  P  e.  ( P ( ball `  D
) x ) ) )
11 feq3 5556 . . . . . . . . . . . . . . 15  |-  ( u  =  ( P (
ball `  D )
x )  ->  (
( F  |`  y
) : y --> u  <-> 
( F  |`  y
) : y --> ( P ( ball `  D
) x ) ) )
1211rexbidv 2748 . . . . . . . . . . . . . 14  |-  ( u  =  ( P (
ball `  D )
x )  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u  <->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) ) )
1310, 12imbi12d 320 . . . . . . . . . . . . 13  |-  ( u  =  ( P (
ball `  D )
x )  ->  (
( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  <-> 
( P  e.  ( P ( ball `  D
) x )  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) ) )
1413rspcva 3083 . . . . . . . . . . . 12  |-  ( ( ( P ( ball `  D ) x )  e.  J  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )  ->  ( P  e.  ( P ( ball `  D ) x )  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) )
1514impancom 440 . . . . . . . . . . 11  |-  ( ( ( P ( ball `  D ) x )  e.  J  /\  P  e.  ( P ( ball `  D ) x ) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) )
168, 9, 15syl2anc 661 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  RR+ )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) ) )
17163expa 1187 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  x  e.  RR+ )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) )
1817adantlrl 719 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  /\  x  e.  RR+ )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) )
1918impancom 440 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )  ->  ( x  e.  RR+  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) ) )
2019ralrimiv 2810 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )  ->  A. x  e.  RR+  E. y  e. 
ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )
212mopni2 20080 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  u  e.  J  /\  P  e.  u
)  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  u
)
22 r19.29 2869 . . . . . . . . . . . 12  |-  ( ( A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  /\  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  u )  ->  E. x  e.  RR+  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  /\  ( P (
ball `  D )
x )  C_  u
) )
23 fss 5579 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  |`  y
) : y --> ( P ( ball `  D
) x )  /\  ( P ( ball `  D
) x )  C_  u )  ->  ( F  |`  y ) : y --> u )
2423expcom 435 . . . . . . . . . . . . . . 15  |-  ( ( P ( ball `  D
) x )  C_  u  ->  ( ( F  |`  y ) : y --> ( P ( ball `  D ) x )  ->  ( F  |`  y ) : y --> u ) )
2524reximdv 2839 . . . . . . . . . . . . . 14  |-  ( ( P ( ball `  D
) x )  C_  u  ->  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )
2625impcom 430 . . . . . . . . . . . . 13  |-  ( ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  /\  ( P ( ball `  D
) x )  C_  u )  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )
2726rexlimivw 2849 . . . . . . . . . . . 12  |-  ( E. x  e.  RR+  ( E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  /\  ( P ( ball `  D
) x )  C_  u )  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )
2822, 27syl 16 . . . . . . . . . . 11  |-  ( ( A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  /\  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  u )  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )
2921, 28sylan2 474 . . . . . . . . . 10  |-  ( ( A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x )  /\  ( D  e.  ( *Met `  X )  /\  u  e.  J  /\  P  e.  u
) )  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )
30293exp2 1205 . . . . . . . . 9  |-  ( A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x )  ->  ( D  e.  ( *Met `  X )  ->  (
u  e.  J  -> 
( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
3130impcom 430 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) )  ->  ( u  e.  J  ->  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
3231adantlr 714 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  ->  ( u  e.  J  ->  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
3332ralrimiv 2810 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  ->  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )
3420, 33impbida 828 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u )  <->  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) ) )
3534pm5.32da 641 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
)  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) ) ) )
36 df-3an 967 . . . 4  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
37 df-3an 967 . . . 4  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e. 
ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D ) x ) ) )
3835, 36, 373bitr4g 288 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) ) )
391, 38syl 16 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) ) )
405, 39bitrd 253 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. x  e.  RR+  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> ( P ( ball `  D
) x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2727   E.wrex 2728    C_ wss 3340   class class class wbr 4304   ran crn 4853    |` cres 4854   -->wf 5426   ` cfv 5430  (class class class)co 6103    ^pm cpm 7227   CCcc 9292   RR*cxr 9429   ZZ>=cuz 10873   RR+crp 11003   *Metcxmt 17813   ballcbl 17815   MetOpencmopn 17818  TopOnctopon 18511   ~~> tclm 18842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-er 7113  df-map 7228  df-en 7323  df-dom 7324  df-sdom 7325  df-sup 7703  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-n0 10592  df-z 10659  df-uz 10874  df-q 10966  df-rp 11004  df-xneg 11101  df-xadd 11102  df-xmul 11103  df-topgen 14394  df-psmet 17821  df-xmet 17822  df-bl 17824  df-mopn 17825  df-top 18515  df-bases 18517  df-topon 18518  df-lm 18845
This theorem is referenced by:  lmmbr2  20782  lmcau  20835
  Copyright terms: Public domain W3C validator