MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimlbs Structured version   Unicode version

Theorem lmimlbs 18997
Description: The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lmimlbs.j  |-  J  =  (LBasis `  S )
lmimlbs.k  |-  K  =  (LBasis `  T )
Assertion
Ref Expression
lmimlbs  |-  ( ( F  e.  ( S LMIso 
T )  /\  B  e.  J )  ->  ( F " B )  e.  K )

Proof of Theorem lmimlbs
StepHypRef Expression
1 lmimlmhm 17836 . . . 4  |-  ( F  e.  ( S LMIso  T
)  ->  F  e.  ( S LMHom  T ) )
21adantr 465 . . 3  |-  ( ( F  e.  ( S LMIso 
T )  /\  B  e.  J )  ->  F  e.  ( S LMHom  T ) )
3 eqid 2457 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
4 eqid 2457 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
53, 4lmimf1o 17835 . . . . 5  |-  ( F  e.  ( S LMIso  T
)  ->  F :
( Base `  S ) -1-1-onto-> ( Base `  T ) )
6 f1of1 5821 . . . . 5  |-  ( F : ( Base `  S
)
-1-1-onto-> ( Base `  T )  ->  F : ( Base `  S ) -1-1-> ( Base `  T ) )
75, 6syl 16 . . . 4  |-  ( F  e.  ( S LMIso  T
)  ->  F :
( Base `  S ) -1-1-> ( Base `  T
) )
87adantr 465 . . 3  |-  ( ( F  e.  ( S LMIso 
T )  /\  B  e.  J )  ->  F : ( Base `  S
) -1-1-> ( Base `  T
) )
9 lmimlbs.j . . . . . 6  |-  J  =  (LBasis `  S )
109lbslinds 18994 . . . . 5  |-  J  C_  (LIndS `  S )
1110sseli 3495 . . . 4  |-  ( B  e.  J  ->  B  e.  (LIndS `  S )
)
1211adantl 466 . . 3  |-  ( ( F  e.  ( S LMIso 
T )  /\  B  e.  J )  ->  B  e.  (LIndS `  S )
)
133, 4lindsmm2 18990 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  F : ( Base `  S
) -1-1-> ( Base `  T
)  /\  B  e.  (LIndS `  S ) )  ->  ( F " B )  e.  (LIndS `  T ) )
142, 8, 12, 13syl3anc 1228 . 2  |-  ( ( F  e.  ( S LMIso 
T )  /\  B  e.  J )  ->  ( F " B )  e.  (LIndS `  T )
)
15 eqid 2457 . . . . . 6  |-  ( LSpan `  S )  =  (
LSpan `  S )
163, 9, 15lbssp 17851 . . . . 5  |-  ( B  e.  J  ->  (
( LSpan `  S ) `  B )  =  (
Base `  S )
)
1716adantl 466 . . . 4  |-  ( ( F  e.  ( S LMIso 
T )  /\  B  e.  J )  ->  (
( LSpan `  S ) `  B )  =  (
Base `  S )
)
1817imaeq2d 5347 . . 3  |-  ( ( F  e.  ( S LMIso 
T )  /\  B  e.  J )  ->  ( F " ( ( LSpan `  S ) `  B
) )  =  ( F " ( Base `  S ) ) )
193, 9lbsss 17849 . . . 4  |-  ( B  e.  J  ->  B  C_  ( Base `  S
) )
20 eqid 2457 . . . . 5  |-  ( LSpan `  T )  =  (
LSpan `  T )
213, 15, 20lmhmlsp 17821 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  B  C_  ( Base `  S
) )  ->  ( F " ( ( LSpan `  S ) `  B
) )  =  ( ( LSpan `  T ) `  ( F " B
) ) )
221, 19, 21syl2an 477 . . 3  |-  ( ( F  e.  ( S LMIso 
T )  /\  B  e.  J )  ->  ( F " ( ( LSpan `  S ) `  B
) )  =  ( ( LSpan `  T ) `  ( F " B
) ) )
235adantr 465 . . . 4  |-  ( ( F  e.  ( S LMIso 
T )  /\  B  e.  J )  ->  F : ( Base `  S
)
-1-1-onto-> ( Base `  T )
)
24 f1ofo 5829 . . . 4  |-  ( F : ( Base `  S
)
-1-1-onto-> ( Base `  T )  ->  F : ( Base `  S ) -onto-> ( Base `  T ) )
25 foima 5806 . . . 4  |-  ( F : ( Base `  S
) -onto-> ( Base `  T
)  ->  ( F " ( Base `  S
) )  =  (
Base `  T )
)
2623, 24, 253syl 20 . . 3  |-  ( ( F  e.  ( S LMIso 
T )  /\  B  e.  J )  ->  ( F " ( Base `  S
) )  =  (
Base `  T )
)
2718, 22, 263eqtr3d 2506 . 2  |-  ( ( F  e.  ( S LMIso 
T )  /\  B  e.  J )  ->  (
( LSpan `  T ) `  ( F " B
) )  =  (
Base `  T )
)
28 lmimlbs.k . . 3  |-  K  =  (LBasis `  T )
294, 28, 20islbs4 18993 . 2  |-  ( ( F " B )  e.  K  <->  ( ( F " B )  e.  (LIndS `  T )  /\  ( ( LSpan `  T
) `  ( F " B ) )  =  ( Base `  T
) ) )
3014, 27, 29sylanbrc 664 1  |-  ( ( F  e.  ( S LMIso 
T )  /\  B  e.  J )  ->  ( F " B )  e.  K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    C_ wss 3471   "cima 5011   -1-1->wf1 5591   -onto->wfo 5592   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   Basecbs 14643   LSpanclspn 17743   LMHom clmhm 17791   LMIso clmim 17792  LBasisclbs 17846  LIndSclinds 18966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-0g 14858  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-grp 16183  df-minusg 16184  df-sbg 16185  df-subg 16324  df-ghm 16391  df-mgp 17268  df-ur 17280  df-ring 17326  df-lmod 17640  df-lss 17705  df-lsp 17744  df-lmhm 17794  df-lmim 17795  df-lbs 17847  df-lindf 18967  df-linds 18968
This theorem is referenced by:  lmiclbs  18998
  Copyright terms: Public domain W3C validator