MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmieu Structured version   Unicode version

Theorem lmieu 24354
Description: Uniqueness of the line mirror point. Theorem 10.2 of [Schwabhauser] p. 88. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
ismid.p  |-  P  =  ( Base `  G
)
ismid.d  |-  .-  =  ( dist `  G )
ismid.i  |-  I  =  (Itv `  G )
ismid.g  |-  ( ph  ->  G  e. TarskiG )
ismid.1  |-  ( ph  ->  GDimTarskiG 2 )
lmieu.l  |-  L  =  (LineG `  G )
lmieu.1  |-  ( ph  ->  D  e.  ran  L
)
lmieu.a  |-  ( ph  ->  A  e.  P )
Assertion
Ref Expression
lmieu  |-  ( ph  ->  E! b  e.  P  ( ( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
Distinct variable groups:    G, b    P, b    ph, b    A, b    D, b    L, b
Allowed substitution hints:    I( b)    .- ( b)

Proof of Theorem lmieu
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 lmieu.a . . . 4  |-  ( ph  ->  A  e.  P )
21adantr 463 . . 3  |-  ( (
ph  /\  A  e.  D )  ->  A  e.  P )
3 simpr 459 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  -.  A  =  b
)
4 eqidd 2455 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
( A (midG `  G ) b )  =  ( A (midG `  G ) b ) )
5 ismid.p . . . . . . . . . . . . . . . 16  |-  P  =  ( Base `  G
)
6 ismid.d . . . . . . . . . . . . . . . 16  |-  .-  =  ( dist `  G )
7 ismid.i . . . . . . . . . . . . . . . 16  |-  I  =  (Itv `  G )
8 ismid.g . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G  e. TarskiG )
98ad4antr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  G  e. TarskiG )
10 ismid.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  GDimTarskiG 2 )
1110ad4antr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  GDimTarskiG 2 )
122ad3antrrr 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  A  e.  P )
13 simpllr 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
b  e.  P )
14 eqid 2454 . . . . . . . . . . . . . . . 16  |-  (pInvG `  G )  =  (pInvG `  G )
155, 6, 7, 9, 11, 12, 13midcl 24347 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
( A (midG `  G ) b )  e.  P )
165, 6, 7, 9, 11, 12, 13, 14, 15ismidb 24348 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
( b  =  ( ( (pInvG `  G
) `  ( A
(midG `  G )
b ) ) `  A )  <->  ( A
(midG `  G )
b )  =  ( A (midG `  G
) b ) ) )
174, 16mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
b  =  ( ( (pInvG `  G ) `  ( A (midG `  G ) b ) ) `  A ) )
1817adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
b  =  ( ( (pInvG `  G ) `  ( A (midG `  G ) b ) ) `  A ) )
19 lmieu.l . . . . . . . . . . . . . . . 16  |-  L  =  (LineG `  G )
209adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  G  e. TarskiG )
21 lmieu.1 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  D  e.  ran  L
)
2221ad4antr 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  D  e.  ran  L )
2322adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  D  e.  ran  L )
2412adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  e.  P )
2513adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
b  e.  P )
263neqned 2657 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  A  =/=  b )
2726adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  =/=  b )
285, 7, 19, 20, 24, 25, 27tgelrnln 24214 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( A L b )  e.  ran  L
)
29 simpr 459 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  D  =/=  ( A L b ) )
30 simp-4r 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  A  e.  D )
3130adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  e.  D )
325, 7, 19, 20, 24, 25, 27tglinerflx1 24217 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  e.  ( A L b ) )
3331, 32elind 3674 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  e.  ( D  i^i  ( A L b ) ) )
34 simpllr 758 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( A (midG `  G ) b )  e.  D )
355, 6, 7, 9, 11, 12, 13midbtwn 24349 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
( A (midG `  G ) b )  e.  ( A I b ) )
365, 7, 19, 9, 12, 13, 15, 26, 35btwnlng1 24203 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  -> 
( A (midG `  G ) b )  e.  ( A L b ) )
3736adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( A (midG `  G ) b )  e.  ( A L b ) )
3834, 37elind 3674 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( A (midG `  G ) b )  e.  ( D  i^i  ( A L b ) ) )
395, 7, 19, 20, 23, 28, 29, 33, 38tglineineq 24227 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  =  ( A
(midG `  G )
b ) )
4039fveq2d 5852 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( (pInvG `  G
) `  A )  =  ( (pInvG `  G ) `  ( A (midG `  G )
b ) ) )
4140fveq1d 5850 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( ( (pInvG `  G ) `  A
) `  A )  =  ( ( (pInvG `  G ) `  ( A (midG `  G )
b ) ) `  A ) )
42 eqid 2454 . . . . . . . . . . . . . 14  |-  ( (pInvG `  G ) `  A
)  =  ( (pInvG `  G ) `  A
)
435, 6, 7, 19, 14, 20, 24, 42mircinv 24252 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  -> 
( ( (pInvG `  G ) `  A
) `  A )  =  A )
4418, 41, 433eqtr2rd 2502 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D  =/=  ( A L b ) )  ->  A  =  b )
453, 44mtand 657 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  -.  D  =/=  ( A L b ) )
468ad5antr 731 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D (⟂G `  G )
( A L b ) )  ->  G  e. TarskiG )
4721ad5antr 731 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D (⟂G `  G )
( A L b ) )  ->  D  e.  ran  L )
48 nne 2655 . . . . . . . . . . . . . . 15  |-  ( -.  D  =/=  ( A L b )  <->  D  =  ( A L b ) )
4945, 48sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  D  =  ( A L b ) )
5049adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D (⟂G `  G )
( A L b ) )  ->  D  =  ( A L b ) )
5150, 47eqeltrrd 2543 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D (⟂G `  G )
( A L b ) )  ->  ( A L b )  e. 
ran  L )
52 simpr 459 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D (⟂G `  G )
( A L b ) )  ->  D
(⟂G `  G ) ( A L b ) )
535, 6, 7, 19, 46, 47, 51, 52perpneq 24295 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  A  e.  D )  /\  b  e.  P )  /\  ( A (midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  /\  D (⟂G `  G )
( A L b ) )  ->  D  =/=  ( A L b ) )
5445, 53mtand 657 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  /\  -.  A  =  b )  ->  -.  D (⟂G `  G
) ( A L b ) )
5554ex 432 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  ->  ( -.  A  =  b  ->  -.  D (⟂G `  G
) ( A L b ) ) )
5655con4d 105 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  ->  ( D
(⟂G `  G ) ( A L b )  ->  A  =  b ) )
57 idd 24 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  ->  ( A  =  b  ->  A  =  b ) )
5856, 57jaod 378 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( A
(midG `  G )
b )  e.  D
)  ->  ( ( D (⟂G `  G )
( A L b )  \/  A  =  b )  ->  A  =  b ) )
5958impr 617 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  A  =  b )
6059eqcomd 2462 . . . . 5  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  b  =  A )
61 simpr 459 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  b  =  A )
6261oveq2d 6286 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  ( A (midG `  G )
b )  =  ( A (midG `  G
) A ) )
635, 6, 7, 8, 10, 1, 1midid 24351 . . . . . . . . 9  |-  ( ph  ->  ( A (midG `  G ) A )  =  A )
6463ad3antrrr 727 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  ( A (midG `  G ) A )  =  A )
6562, 64eqtrd 2495 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  ( A (midG `  G )
b )  =  A )
66 simpllr 758 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  A  e.  D )
6765, 66eqeltrd 2542 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  ( A (midG `  G )
b )  e.  D
)
6861eqcomd 2462 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  A  =  b )
6968olcd 391 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) )
7067, 69jca 530 . . . . 5  |-  ( ( ( ( ph  /\  A  e.  D )  /\  b  e.  P
)  /\  b  =  A )  ->  (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
7160, 70impbida 830 . . . 4  |-  ( ( ( ph  /\  A  e.  D )  /\  b  e.  P )  ->  (
( ( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) )  <->  b  =  A ) )
7271ralrimiva 2868 . . 3  |-  ( (
ph  /\  A  e.  D )  ->  A. b  e.  P  ( (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) )  <->  b  =  A ) )
73 reu6i 3287 . . 3  |-  ( ( A  e.  P  /\  A. b  e.  P  ( ( ( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) )  <->  b  =  A ) )  ->  E! b  e.  P  ( ( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
742, 72, 73syl2anc 659 . 2  |-  ( (
ph  /\  A  e.  D )  ->  E! b  e.  P  (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
758adantr 463 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  D )  ->  G  e. TarskiG )
7675ad2antrr 723 . . . . 5  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  G  e. TarskiG )
7721adantr 463 . . . . . . 7  |-  ( (
ph  /\  -.  A  e.  D )  ->  D  e.  ran  L )
7877ad2antrr 723 . . . . . 6  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  D  e.  ran  L )
79 simplr 753 . . . . . 6  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  x  e.  D
)
805, 19, 7, 76, 78, 79tglnpt 24140 . . . . 5  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  x  e.  P
)
81 eqid 2454 . . . . 5  |-  ( (pInvG `  G ) `  x
)  =  ( (pInvG `  G ) `  x
)
821adantr 463 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  D )  ->  A  e.  P )
8382ad2antrr 723 . . . . 5  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  A  e.  P
)
845, 6, 7, 19, 14, 76, 80, 81, 83mircl 24246 . . . 4  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  ( ( (pInvG `  G ) `  x
) `  A )  e.  P )
85 oveq2 6278 . . . . . . . . . 10  |-  ( x  =  ( A (midG `  G ) b )  ->  ( A L x )  =  ( A L ( A (midG `  G )
b ) ) )
8685breq1d 4449 . . . . . . . . 9  |-  ( x  =  ( A (midG `  G ) b )  ->  ( ( A L x ) (⟂G `  G ) D  <->  ( A L ( A (midG `  G ) b ) ) (⟂G `  G
) D ) )
87 simprl 754 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A
(midG `  G )
b )  e.  D
)
88 simpr 459 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  A  e.  D )  ->  -.  A  e.  D )
895, 6, 7, 19, 75, 77, 82, 88foot 24300 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  A  e.  D )  ->  E! x  e.  D  ( A L x ) (⟂G `  G ) D )
90 reurmo 3072 . . . . . . . . . . 11  |-  ( E! x  e.  D  ( A L x ) (⟂G `  G ) D  ->  E* x  e.  D  ( A L x ) (⟂G `  G
) D )
9189, 90syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  -.  A  e.  D )  ->  E* x  e.  D  ( A L x ) (⟂G `  G ) D )
9291ad4antr 729 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  E* x  e.  D  ( A L x ) (⟂G `  G ) D )
9379ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  x  e.  D )
94 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A L x ) (⟂G `  G ) D )
9576ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  G  e. TarskiG )
9683ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  A  e.  P )
97 simplr 753 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  b  e.  P )
9810ad5antr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  GDimTarskiG 2 )
995, 6, 7, 95, 98, 96, 97midcl 24347 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A
(midG `  G )
b )  e.  P
)
1005, 6, 7, 95, 98, 96, 97midbtwn 24349 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A
(midG `  G )
b )  e.  ( A I b ) )
10188ad4antr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  -.  A  e.  D )
102 nelne2 2784 . . . . . . . . . . . . 13  |-  ( ( ( A (midG `  G ) b )  e.  D  /\  -.  A  e.  D )  ->  ( A (midG `  G ) b )  =/=  A )
10387, 101, 102syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A
(midG `  G )
b )  =/=  A
)
1045, 6, 7, 95, 96, 99, 97, 100, 103tgbtwnne 24085 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  A  =/=  b )
1055, 7, 19, 95, 96, 97, 99, 104, 100btwnlng1 24203 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A
(midG `  G )
b )  e.  ( A L b ) )
1065, 7, 19, 95, 96, 97, 104, 99, 103, 105tglineelsb2 24216 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A L b )  =  ( A L ( A (midG `  G
) b ) ) )
10778ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  D  e.  ran  L )
1085, 7, 19, 95, 96, 97, 104tgelrnln 24214 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A L b )  e. 
ran  L )
109104neneqd 2656 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  -.  A  =  b )
110 simprr 755 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( D
(⟂G `  G ) ( A L b )  \/  A  =  b ) )
111110orcomd 386 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A  =  b  \/  D
(⟂G `  G ) ( A L b ) ) )
112111ord 375 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( -.  A  =  b  ->  D (⟂G `  G )
( A L b ) ) )
113109, 112mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  D (⟂G `  G ) ( A L b ) )
1145, 6, 7, 19, 95, 107, 108, 113perpcom 24294 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A L b ) (⟂G `  G ) D )
115106, 114eqbrtrrd 4461 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A L ( A (midG `  G ) b ) ) (⟂G `  G
) D )
11686, 87, 92, 93, 94, 115rmoi2 3419 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  x  =  ( A (midG `  G
) b ) )
117116eqcomd 2462 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( A
(midG `  G )
b )  =  x )
11880ad2antrr 723 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  x  e.  P )
1195, 6, 7, 95, 98, 96, 97, 14, 118ismidb 24348 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  ( b  =  ( ( (pInvG `  G ) `  x
) `  A )  <->  ( A (midG `  G
) b )  =  x ) )
120117, 119mpbird 232 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )  ->  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)
121 simpr 459 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)
12276ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  G  e. TarskiG )
12310ad5antr 731 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  GDimTarskiG 2 )
12483ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  A  e.  P )
125 simplr 753 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  b  e.  P )
12680ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  x  e.  P )
1275, 6, 7, 122, 123, 124, 125, 14, 126ismidb 24348 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( b  =  ( ( (pInvG `  G ) `  x
) `  A )  <->  ( A (midG `  G
) b )  =  x ) )
128121, 127mpbid 210 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( A
(midG `  G )
b )  =  x )
12979ad2antrr 723 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  x  e.  D )
130128, 129eqeltrd 2542 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( A
(midG `  G )
b )  e.  D
)
131122adantr 463 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  G  e. TarskiG )
132 simp-4r 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  ( A L x ) (⟂G `  G ) D )
13319, 131, 132perpln1 24291 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  ( A L x )  e. 
ran  L )
13478ad3antrrr 727 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  D  e.  ran  L )
1355, 6, 7, 19, 131, 133, 134, 132perpcom 24294 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  D
(⟂G `  G ) ( A L x ) )
136124adantr 463 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  A  e.  P )
137126adantr 463 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  x  e.  P )
1385, 7, 19, 131, 136, 137, 133tglnne 24212 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  A  =/=  x )
139 simpllr 758 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  b  e.  P )
140 simpr 459 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  A  =/=  b )
141140necomd 2725 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  b  =/=  A )
1425, 6, 7, 19, 14, 131, 137, 81, 136mirbtwn 24243 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  x  e.  ( ( ( (pInvG `  G ) `  x
) `  A )
I A ) )
143 simplr 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)
144143oveq1d 6285 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  (
b I A )  =  ( ( ( (pInvG `  G ) `  x ) `  A
) I A ) )
145142, 144eleqtrrd 2545 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  x  e.  ( b I A ) )
1465, 7, 19, 131, 139, 136, 137, 141, 145btwnlng1 24203 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  x  e.  ( b L A ) )
1475, 7, 19, 131, 136, 137, 139, 138, 146, 141lnrot1 24207 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  b  e.  ( A L x ) )
1485, 7, 19, 131, 136, 137, 138, 139, 141, 147tglineelsb2 24216 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  ( A L x )  =  ( A L b ) )
149135, 148breqtrd 4463 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  -.  A  e.  D )  /\  x  e.  D
)  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  /\  A  =/=  b )  ->  D
(⟂G `  G ) ( A L b ) )
150149ex 432 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( A  =/=  b  ->  D (⟂G `  G ) ( A L b ) ) )
151150necon1bd 2672 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( -.  D (⟂G `  G )
( A L b )  ->  A  =  b ) )
152151orrd 376 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( D
(⟂G `  G ) ( A L b )  \/  A  =  b ) )
153130, 152jca 530 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  -.  A  e.  D )  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  /\  b  =  ( ( (pInvG `  G ) `  x
) `  A )
)  ->  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )
154120, 153impbida 830 . . . . 5  |-  ( ( ( ( ( ph  /\ 
-.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  /\  b  e.  P
)  ->  ( (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) )  <->  b  =  ( ( (pInvG `  G ) `  x
) `  A )
) )
155154ralrimiva 2868 . . . 4  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  A. b  e.  P  ( ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) )  <-> 
b  =  ( ( (pInvG `  G ) `  x ) `  A
) ) )
156 reu6i 3287 . . . 4  |-  ( ( ( ( (pInvG `  G ) `  x
) `  A )  e.  P  /\  A. b  e.  P  ( (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) )  <->  b  =  ( ( (pInvG `  G ) `  x
) `  A )
) )  ->  E! b  e.  P  (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
15784, 155, 156syl2anc 659 . . 3  |-  ( ( ( ( ph  /\  -.  A  e.  D
)  /\  x  e.  D )  /\  ( A L x ) (⟂G `  G ) D )  ->  E! b  e.  P  ( ( A (midG `  G )
b )  e.  D  /\  ( D (⟂G `  G
) ( A L b )  \/  A  =  b ) ) )
1585, 6, 7, 19, 75, 77, 82, 88footex 24299 . . 3  |-  ( (
ph  /\  -.  A  e.  D )  ->  E. x  e.  D  ( A L x ) (⟂G `  G ) D )
159157, 158r19.29a 2996 . 2  |-  ( (
ph  /\  -.  A  e.  D )  ->  E! b  e.  P  (
( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
16074, 159pm2.61dan 789 1  |-  ( ph  ->  E! b  e.  P  ( ( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G )
( A L b )  \/  A  =  b ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E!wreu 2806   E*wrmo 2807   class class class wbr 4439   ran crn 4989   ` cfv 5570  (class class class)co 6270   2c2 10581   Basecbs 14719   distcds 14796  TarskiGcstrkg 24026  DimTarskiGcstrkgld 24030  Itvcitv 24033  LineGclng 24034  pInvGcmir 24237  ⟂Gcperpg 24276  midGcmid 24342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-hash 12391  df-word 12529  df-concat 12531  df-s1 12532  df-s2 12807  df-s3 12808  df-trkgc 24045  df-trkgb 24046  df-trkgcb 24047  df-trkgld 24049  df-trkg 24051  df-cgrg 24107  df-leg 24174  df-mir 24238  df-rag 24275  df-perpg 24277  df-mid 24344
This theorem is referenced by:  lmif  24355  islmib  24357
  Copyright terms: Public domain W3C validator