Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmlnmsplit Structured version   Unicode version

Theorem lmhmlnmsplit 35865
Description: If the kernel and range of a homomorphism of left modules are Noetherian, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 12-Jun-2015.)
Hypotheses
Ref Expression
lmhmfgsplit.z  |-  .0.  =  ( 0g `  T )
lmhmfgsplit.k  |-  K  =  ( `' F " {  .0.  } )
lmhmfgsplit.u  |-  U  =  ( Ss  K )
lmhmfgsplit.v  |-  V  =  ( Ts  ran  F )
Assertion
Ref Expression
lmhmlnmsplit  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LNoeM  /\  V  e. LNoeM )  ->  S  e. LNoeM )

Proof of Theorem lmhmlnmsplit
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 lmhmlmod1 18244 . . 3  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
213ad2ant1 1026 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LNoeM  /\  V  e. LNoeM )  ->  S  e.  LMod )
3 eqid 2422 . . . . . 6  |-  ( LSubSp `  S )  =  (
LSubSp `  S )
4 eqid 2422 . . . . . 6  |-  ( Ss  a )  =  ( Ss  a )
53, 4reslmhm 18263 . . . . 5  |-  ( ( F  e.  ( S LMHom 
T )  /\  a  e.  ( LSubSp `  S )
)  ->  ( F  |`  a )  e.  ( ( Ss  a ) LMHom  T
) )
653ad2antl1 1167 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( F  |`  a )  e.  ( ( Ss  a ) LMHom  T
) )
7 cnvresima 5340 . . . . . . . 8  |-  ( `' ( F  |`  a
) " {  .0.  } )  =  ( ( `' F " {  .0.  } )  i^i  a )
8 lmhmfgsplit.k . . . . . . . . . 10  |-  K  =  ( `' F " {  .0.  } )
98eqcomi 2435 . . . . . . . . 9  |-  ( `' F " {  .0.  } )  =  K
109ineq1i 3660 . . . . . . . 8  |-  ( ( `' F " {  .0.  } )  i^i  a )  =  ( K  i^i  a )
11 incom 3655 . . . . . . . 8  |-  ( K  i^i  a )  =  ( a  i^i  K
)
127, 10, 113eqtri 2455 . . . . . . 7  |-  ( `' ( F  |`  a
) " {  .0.  } )  =  ( a  i^i  K )
1312oveq2i 6313 . . . . . 6  |-  ( ( Ss  a )s  ( `' ( F  |`  a ) " {  .0.  } ) )  =  ( ( Ss  a )s  ( a  i^i 
K ) )
14 lmhmfgsplit.u . . . . . . . . 9  |-  U  =  ( Ss  K )
1514oveq1i 6312 . . . . . . . 8  |-  ( Us  ( a  i^i  K ) )  =  ( ( Ss  K )s  ( a  i^i 
K ) )
16 simpl1 1008 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  F  e.  ( S LMHom  T ) )
17 cnvexg 6750 . . . . . . . . . . . 12  |-  ( F  e.  ( S LMHom  T
)  ->  `' F  e.  _V )
18 imaexg 6741 . . . . . . . . . . . 12  |-  ( `' F  e.  _V  ->  ( `' F " {  .0.  } )  e.  _V )
1917, 18syl 17 . . . . . . . . . . 11  |-  ( F  e.  ( S LMHom  T
)  ->  ( `' F " {  .0.  }
)  e.  _V )
208, 19syl5eqel 2514 . . . . . . . . . 10  |-  ( F  e.  ( S LMHom  T
)  ->  K  e.  _V )
2116, 20syl 17 . . . . . . . . 9  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  K  e.  _V )
22 inss2 3683 . . . . . . . . 9  |-  ( a  i^i  K )  C_  K
23 ressabs 15176 . . . . . . . . 9  |-  ( ( K  e.  _V  /\  ( a  i^i  K
)  C_  K )  ->  ( ( Ss  K )s  ( a  i^i  K ) )  =  ( Ss  ( a  i^i  K ) ) )
2421, 22, 23sylancl 666 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( ( Ss  K )s  ( a  i^i 
K ) )  =  ( Ss  ( a  i^i 
K ) ) )
2515, 24syl5eq 2475 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( Us  (
a  i^i  K )
)  =  ( Ss  ( a  i^i  K ) ) )
26 vex 3084 . . . . . . . 8  |-  a  e. 
_V
27 inss1 3682 . . . . . . . 8  |-  ( a  i^i  K )  C_  a
28 ressabs 15176 . . . . . . . 8  |-  ( ( a  e.  _V  /\  ( a  i^i  K
)  C_  a )  ->  ( ( Ss  a )s  ( a  i^i  K ) )  =  ( Ss  ( a  i^i  K ) ) )
2926, 27, 28mp2an 676 . . . . . . 7  |-  ( ( Ss  a )s  ( a  i^i 
K ) )  =  ( Ss  ( a  i^i 
K ) )
3025, 29syl6reqr 2482 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( ( Ss  a )s  ( a  i^i 
K ) )  =  ( Us  ( a  i^i 
K ) ) )
3113, 30syl5eq 2475 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( ( Ss  a )s  ( `' ( F  |`  a ) " {  .0.  } ) )  =  ( Us  ( a  i^i  K ) ) )
32 simpl2 1009 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  U  e. LNoeM )
332adantr 466 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  S  e.  LMod )
34 simpr 462 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  a  e.  ( LSubSp `  S )
)
35 lmhmfgsplit.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  T )
368, 35, 3lmhmkerlss 18262 . . . . . . . . 9  |-  ( F  e.  ( S LMHom  T
)  ->  K  e.  ( LSubSp `  S )
)
3716, 36syl 17 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  K  e.  ( LSubSp `  S )
)
383lssincl 18176 . . . . . . . 8  |-  ( ( S  e.  LMod  /\  a  e.  ( LSubSp `  S )  /\  K  e.  ( LSubSp `
 S ) )  ->  ( a  i^i 
K )  e.  (
LSubSp `  S ) )
3933, 34, 37, 38syl3anc 1264 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( a  i^i  K )  e.  (
LSubSp `  S ) )
4022a1i 11 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( a  i^i  K )  C_  K
)
41 eqid 2422 . . . . . . . . 9  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
4214, 3, 41lsslss 18172 . . . . . . . 8  |-  ( ( S  e.  LMod  /\  K  e.  ( LSubSp `  S )
)  ->  ( (
a  i^i  K )  e.  ( LSubSp `  U )  <->  ( ( a  i^i  K
)  e.  ( LSubSp `  S )  /\  (
a  i^i  K )  C_  K ) ) )
4333, 37, 42syl2anc 665 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( (
a  i^i  K )  e.  ( LSubSp `  U )  <->  ( ( a  i^i  K
)  e.  ( LSubSp `  S )  /\  (
a  i^i  K )  C_  K ) ) )
4439, 40, 43mpbir2and 930 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( a  i^i  K )  e.  (
LSubSp `  U ) )
45 eqid 2422 . . . . . . 7  |-  ( Us  ( a  i^i  K ) )  =  ( Us  ( a  i^i  K ) )
4641, 45lnmlssfg 35858 . . . . . 6  |-  ( ( U  e. LNoeM  /\  (
a  i^i  K )  e.  ( LSubSp `  U )
)  ->  ( Us  (
a  i^i  K )
)  e. LFinGen )
4732, 44, 46syl2anc 665 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( Us  (
a  i^i  K )
)  e. LFinGen )
4831, 47eqeltrd 2510 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( ( Ss  a )s  ( `' ( F  |`  a ) " {  .0.  } ) )  e. LFinGen )
49 lmhmfgsplit.v . . . . . . . . 9  |-  V  =  ( Ts  ran  F )
5049oveq1i 6312 . . . . . . . 8  |-  ( Vs  ran  ( F  |`  a
) )  =  ( ( Ts  ran  F )s  ran  ( F  |`  a ) )
51 rnexg 6736 . . . . . . . . 9  |-  ( F  e.  ( S LMHom  T
)  ->  ran  F  e. 
_V )
52 resexg 5163 . . . . . . . . . 10  |-  ( F  e.  ( S LMHom  T
)  ->  ( F  |`  a )  e.  _V )
53 rnexg 6736 . . . . . . . . . 10  |-  ( ( F  |`  a )  e.  _V  ->  ran  ( F  |`  a )  e.  _V )
5452, 53syl 17 . . . . . . . . 9  |-  ( F  e.  ( S LMHom  T
)  ->  ran  ( F  |`  a )  e.  _V )
55 ressress 15175 . . . . . . . . 9  |-  ( ( ran  F  e.  _V  /\ 
ran  ( F  |`  a )  e.  _V )  ->  ( ( Ts  ran 
F )s  ran  ( F  |`  a ) )  =  ( Ts  ( ran  F  i^i  ran  ( F  |`  a ) ) ) )
5651, 54, 55syl2anc 665 . . . . . . . 8  |-  ( F  e.  ( S LMHom  T
)  ->  ( ( Ts  ran  F )s  ran  ( F  |`  a ) )  =  ( Ts  ( ran  F  i^i  ran  ( F  |`  a ) ) ) )
5750, 56syl5eq 2475 . . . . . . 7  |-  ( F  e.  ( S LMHom  T
)  ->  ( Vs  ran  ( F  |`  a ) )  =  ( Ts  ( ran  F  i^i  ran  ( F  |`  a ) ) ) )
58 incom 3655 . . . . . . . . 9  |-  ( ran 
F  i^i  ran  ( F  |`  a ) )  =  ( ran  ( F  |`  a )  i^i  ran  F )
59 resss 5144 . . . . . . . . . . 11  |-  ( F  |`  a )  C_  F
60 rnss 5079 . . . . . . . . . . 11  |-  ( ( F  |`  a )  C_  F  ->  ran  ( F  |`  a )  C_  ran  F )
6159, 60ax-mp 5 . . . . . . . . . 10  |-  ran  ( F  |`  a )  C_  ran  F
62 df-ss 3450 . . . . . . . . . 10  |-  ( ran  ( F  |`  a
)  C_  ran  F  <->  ( ran  ( F  |`  a )  i^i  ran  F )  =  ran  ( F  |`  a ) )
6361, 62mpbi 211 . . . . . . . . 9  |-  ( ran  ( F  |`  a
)  i^i  ran  F )  =  ran  ( F  |`  a )
6458, 63eqtr2i 2452 . . . . . . . 8  |-  ran  ( F  |`  a )  =  ( ran  F  i^i  ran  ( F  |`  a
) )
6564oveq2i 6313 . . . . . . 7  |-  ( Ts  ran  ( F  |`  a
) )  =  ( Ts  ( ran  F  i^i  ran  ( F  |`  a
) ) )
6657, 65syl6reqr 2482 . . . . . 6  |-  ( F  e.  ( S LMHom  T
)  ->  ( Ts  ran  ( F  |`  a ) )  =  ( Vs  ran  ( F  |`  a
) ) )
6716, 66syl 17 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( Ts  ran  ( F  |`  a ) )  =  ( Vs  ran  ( F  |`  a
) ) )
68 simpl3 1010 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  V  e. LNoeM )
69 lmhmrnlss 18261 . . . . . . . 8  |-  ( ( F  |`  a )  e.  ( ( Ss  a ) LMHom 
T )  ->  ran  ( F  |`  a )  e.  ( LSubSp `  T
) )
706, 69syl 17 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ran  ( F  |`  a )  e.  (
LSubSp `  T ) )
7161a1i 11 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ran  ( F  |`  a )  C_  ran  F )
72 lmhmlmod2 18243 . . . . . . . . 9  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
7316, 72syl 17 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  T  e.  LMod )
74 lmhmrnlss 18261 . . . . . . . . 9  |-  ( F  e.  ( S LMHom  T
)  ->  ran  F  e.  ( LSubSp `  T )
)
7516, 74syl 17 . . . . . . . 8  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ran  F  e.  ( LSubSp `  T )
)
76 eqid 2422 . . . . . . . . 9  |-  ( LSubSp `  T )  =  (
LSubSp `  T )
77 eqid 2422 . . . . . . . . 9  |-  ( LSubSp `  V )  =  (
LSubSp `  V )
7849, 76, 77lsslss 18172 . . . . . . . 8  |-  ( ( T  e.  LMod  /\  ran  F  e.  ( LSubSp `  T
) )  ->  ( ran  ( F  |`  a
)  e.  ( LSubSp `  V )  <->  ( ran  ( F  |`  a )  e.  ( LSubSp `  T
)  /\  ran  ( F  |`  a )  C_  ran  F ) ) )
7973, 75, 78syl2anc 665 . . . . . . 7  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( ran  ( F  |`  a )  e.  ( LSubSp `  V
)  <->  ( ran  ( F  |`  a )  e.  ( LSubSp `  T )  /\  ran  ( F  |`  a )  C_  ran  F ) ) )
8070, 71, 79mpbir2and 930 . . . . . 6  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ran  ( F  |`  a )  e.  (
LSubSp `  V ) )
81 eqid 2422 . . . . . . 7  |-  ( Vs  ran  ( F  |`  a
) )  =  ( Vs 
ran  ( F  |`  a ) )
8277, 81lnmlssfg 35858 . . . . . 6  |-  ( ( V  e. LNoeM  /\  ran  ( F  |`  a )  e.  ( LSubSp `  V )
)  ->  ( Vs  ran  ( F  |`  a ) )  e. LFinGen )
8368, 80, 82syl2anc 665 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( Vs  ran  ( F  |`  a ) )  e. LFinGen )
8467, 83eqeltrd 2510 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( Ts  ran  ( F  |`  a ) )  e. LFinGen )
85 eqid 2422 . . . . 5  |-  ( `' ( F  |`  a
) " {  .0.  } )  =  ( `' ( F  |`  a
) " {  .0.  } )
86 eqid 2422 . . . . 5  |-  ( ( Ss  a )s  ( `' ( F  |`  a ) " {  .0.  } ) )  =  ( ( Ss  a )s  ( `' ( F  |`  a ) " {  .0.  } ) )
87 eqid 2422 . . . . 5  |-  ( Ts  ran  ( F  |`  a
) )  =  ( Ts 
ran  ( F  |`  a ) )
8835, 85, 86, 87lmhmfgsplit 35864 . . . 4  |-  ( ( ( F  |`  a
)  e.  ( ( Ss  a ) LMHom  T )  /\  ( ( Ss  a )s  ( `' ( F  |`  a ) " {  .0.  } ) )  e. LFinGen  /\  ( Ts  ran  ( F  |`  a ) )  e. LFinGen )  ->  ( Ss  a )  e. LFinGen )
896, 48, 84, 88syl3anc 1264 . . 3  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LNoeM  /\  V  e. LNoeM
)  /\  a  e.  ( LSubSp `  S )
)  ->  ( Ss  a
)  e. LFinGen )
9089ralrimiva 2839 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LNoeM  /\  V  e. LNoeM )  ->  A. a  e.  (
LSubSp `  S ) ( Ss  a )  e. LFinGen )
913islnm 35855 . 2  |-  ( S  e. LNoeM 
<->  ( S  e.  LMod  /\ 
A. a  e.  (
LSubSp `  S ) ( Ss  a )  e. LFinGen )
)
922, 90, 91sylanbrc 668 1  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LNoeM  /\  V  e. LNoeM )  ->  S  e. LNoeM )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   A.wral 2775   _Vcvv 3081    i^i cin 3435    C_ wss 3436   {csn 3996   `'ccnv 4849   ran crn 4851    |` cres 4852   "cima 4853   ` cfv 5598  (class class class)co 6302   ↾s cress 15110   0gc0g 15326   LModclmod 18079   LSubSpclss 18143   LMHom clmhm 18230  LFinGenclfig 35845  LNoeMclnm 35853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-1st 6804  df-2nd 6805  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-nn 10611  df-2 10669  df-3 10670  df-4 10671  df-5 10672  df-6 10673  df-ndx 15112  df-slot 15113  df-base 15114  df-sets 15115  df-ress 15116  df-plusg 15191  df-sca 15194  df-vsca 15195  df-0g 15328  df-mgm 16476  df-sgrp 16515  df-mnd 16525  df-submnd 16571  df-grp 16661  df-minusg 16662  df-sbg 16663  df-subg 16802  df-ghm 16869  df-cntz 16959  df-lsm 17276  df-cmn 17420  df-abl 17421  df-mgp 17712  df-ur 17724  df-ring 17770  df-lmod 18081  df-lss 18144  df-lsp 18183  df-lmhm 18233  df-lfig 35846  df-lnm 35854
This theorem is referenced by:  pwslnmlem2  35871
  Copyright terms: Public domain W3C validator