MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlin Structured version   Unicode version

Theorem lmhmlin 17094
Description: A homomorphism of left modules is  K-linear. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmlin.k  |-  K  =  (Scalar `  S )
lmhmlin.b  |-  B  =  ( Base `  K
)
lmhmlin.e  |-  E  =  ( Base `  S
)
lmhmlin.m  |-  .x.  =  ( .s `  S )
lmhmlin.n  |-  .X.  =  ( .s `  T )
Assertion
Ref Expression
lmhmlin  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  B  /\  Y  e.  E )  ->  ( F `  ( X  .x.  Y ) )  =  ( X  .X.  ( F `  Y )
) )

Proof of Theorem lmhmlin
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmlin.k . . . . . 6  |-  K  =  (Scalar `  S )
2 eqid 2441 . . . . . 6  |-  (Scalar `  T )  =  (Scalar `  T )
3 lmhmlin.b . . . . . 6  |-  B  =  ( Base `  K
)
4 lmhmlin.e . . . . . 6  |-  E  =  ( Base `  S
)
5 lmhmlin.m . . . . . 6  |-  .x.  =  ( .s `  S )
6 lmhmlin.n . . . . . 6  |-  .X.  =  ( .s `  T )
71, 2, 3, 4, 5, 6islmhm 17086 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  <->  ( ( S  e.  LMod  /\  T  e. 
LMod )  /\  ( F  e.  ( S  GrpHom  T )  /\  (Scalar `  T )  =  K  /\  A. a  e.  B  A. b  e.  E  ( F `  ( a  .x.  b
) )  =  ( a  .X.  ( F `  b ) ) ) ) )
87simprbi 461 . . . 4  |-  ( F  e.  ( S LMHom  T
)  ->  ( F  e.  ( S  GrpHom  T )  /\  (Scalar `  T
)  =  K  /\  A. a  e.  B  A. b  e.  E  ( F `  ( a  .x.  b ) )  =  ( a  .X.  ( F `  b )
) ) )
98simp3d 997 . . 3  |-  ( F  e.  ( S LMHom  T
)  ->  A. a  e.  B  A. b  e.  E  ( F `  ( a  .x.  b
) )  =  ( a  .X.  ( F `  b ) ) )
10 oveq1 6097 . . . . . 6  |-  ( a  =  X  ->  (
a  .x.  b )  =  ( X  .x.  b ) )
1110fveq2d 5692 . . . . 5  |-  ( a  =  X  ->  ( F `  ( a  .x.  b ) )  =  ( F `  ( X  .x.  b ) ) )
12 oveq1 6097 . . . . 5  |-  ( a  =  X  ->  (
a  .X.  ( F `  b ) )  =  ( X  .X.  ( F `  b )
) )
1311, 12eqeq12d 2455 . . . 4  |-  ( a  =  X  ->  (
( F `  (
a  .x.  b )
)  =  ( a 
.X.  ( F `  b ) )  <->  ( F `  ( X  .x.  b
) )  =  ( X  .X.  ( F `  b ) ) ) )
14 oveq2 6098 . . . . . 6  |-  ( b  =  Y  ->  ( X  .x.  b )  =  ( X  .x.  Y
) )
1514fveq2d 5692 . . . . 5  |-  ( b  =  Y  ->  ( F `  ( X  .x.  b ) )  =  ( F `  ( X  .x.  Y ) ) )
16 fveq2 5688 . . . . . 6  |-  ( b  =  Y  ->  ( F `  b )  =  ( F `  Y ) )
1716oveq2d 6106 . . . . 5  |-  ( b  =  Y  ->  ( X  .X.  ( F `  b ) )  =  ( X  .X.  ( F `  Y )
) )
1815, 17eqeq12d 2455 . . . 4  |-  ( b  =  Y  ->  (
( F `  ( X  .x.  b ) )  =  ( X  .X.  ( F `  b ) )  <->  ( F `  ( X  .x.  Y ) )  =  ( X 
.X.  ( F `  Y ) ) ) )
1913, 18rspc2v 3076 . . 3  |-  ( ( X  e.  B  /\  Y  e.  E )  ->  ( A. a  e.  B  A. b  e.  E  ( F `  ( a  .x.  b
) )  =  ( a  .X.  ( F `  b ) )  -> 
( F `  ( X  .x.  Y ) )  =  ( X  .X.  ( F `  Y ) ) ) )
209, 19syl5com 30 . 2  |-  ( F  e.  ( S LMHom  T
)  ->  ( ( X  e.  B  /\  Y  e.  E )  ->  ( F `  ( X  .x.  Y ) )  =  ( X  .X.  ( F `  Y ) ) ) )
21203impib 1180 1  |-  ( ( F  e.  ( S LMHom 
T )  /\  X  e.  B  /\  Y  e.  E )  ->  ( F `  ( X  .x.  Y ) )  =  ( X  .X.  ( F `  Y )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   A.wral 2713   ` cfv 5415  (class class class)co 6090   Basecbs 14170  Scalarcsca 14237   .scvsca 14238    GrpHom cghm 15737   LModclmod 16928   LMHom clmhm 17078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-iota 5378  df-fun 5417  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-lmhm 17081
This theorem is referenced by:  islmhm2  17097  lmhmco  17102  lmhmplusg  17103  lmhmvsca  17104  lmhmf1o  17105  lmhmima  17106  lmhmpreima  17107  reslmhm  17111  reslmhm2  17112  reslmhm2b  17113  lmhmeql  17114  ipass  18033  lindfmm  18215  nmoleub2lem3  20629  nmoleub3  20633  mendassa  29476
  Copyright terms: Public domain W3C validator