Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmfgsplit Structured version   Visualization version   Unicode version

Theorem lmhmfgsplit 35944
Description: If the kernel and range of a homomorphism of left modules are finitely generated, then so is the domain. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lmhmfgsplit.z  |-  .0.  =  ( 0g `  T )
lmhmfgsplit.k  |-  K  =  ( `' F " {  .0.  } )
lmhmfgsplit.u  |-  U  =  ( Ss  K )
lmhmfgsplit.v  |-  V  =  ( Ts  ran  F )
Assertion
Ref Expression
lmhmfgsplit  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  ->  S  e. LFinGen )

Proof of Theorem lmhmfgsplit
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1010 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  ->  V  e. LFinGen )
2 lmhmlmod2 18255 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
323ad2ant1 1029 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  ->  T  e.  LMod )
4 lmhmrnlss 18273 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  ran  F  e.  ( LSubSp `  T )
)
543ad2ant1 1029 . . . 4  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  ->  ran  F  e.  (
LSubSp `  T ) )
6 lmhmfgsplit.v . . . . 5  |-  V  =  ( Ts  ran  F )
7 eqid 2451 . . . . 5  |-  ( LSubSp `  T )  =  (
LSubSp `  T )
8 eqid 2451 . . . . 5  |-  ( LSpan `  T )  =  (
LSpan `  T )
96, 7, 8islssfg 35928 . . . 4  |-  ( ( T  e.  LMod  /\  ran  F  e.  ( LSubSp `  T
) )  ->  ( V  e. LFinGen  <->  E. a  e.  ~P  ran  F ( a  e. 
Fin  /\  ( ( LSpan `  T ) `  a )  =  ran  F ) ) )
103, 5, 9syl2anc 667 . . 3  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  ->  ( V  e. LFinGen  <->  E. a  e.  ~P  ran  F ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )
111, 10mpbid 214 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  ->  E. a  e.  ~P  ran  F ( a  e. 
Fin  /\  ( ( LSpan `  T ) `  a )  =  ran  F ) )
12 simpl1 1011 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e. 
~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  ->  F  e.  ( S LMHom  T ) )
13 eqid 2451 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
14 eqid 2451 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
1513, 14lmhmf 18257 . . . . 5  |-  ( F  e.  ( S LMHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
16 ffn 5728 . . . . 5  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  F  Fn  ( Base `  S )
)
1712, 15, 163syl 18 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e. 
~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  ->  F  Fn  ( Base `  S )
)
18 elpwi 3960 . . . . 5  |-  ( a  e.  ~P ran  F  ->  a  C_  ran  F )
1918ad2antrl 734 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e. 
~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  ->  a  C_  ran  F )
20 simprrl 774 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e. 
~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  ->  a  e.  Fin )
21 fipreima 7880 . . . 4  |-  ( ( F  Fn  ( Base `  S )  /\  a  C_ 
ran  F  /\  a  e.  Fin )  ->  E. b  e.  ( ~P ( Base `  S )  i^i  Fin ) ( F "
b )  =  a )
2217, 19, 20, 21syl3anc 1268 . . 3  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e. 
~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  ->  E. b  e.  ( ~P ( Base `  S )  i^i  Fin ) ( F "
b )  =  a )
23 eqid 2451 . . . . . . 7  |-  ( LSubSp `  S )  =  (
LSubSp `  S )
24 eqid 2451 . . . . . . 7  |-  ( LSSum `  S )  =  (
LSSum `  S )
25 lmhmfgsplit.z . . . . . . 7  |-  .0.  =  ( 0g `  T )
26 lmhmfgsplit.k . . . . . . 7  |-  K  =  ( `' F " {  .0.  } )
27 simpll1 1047 . . . . . . 7  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  ->  F  e.  ( S LMHom  T ) )
28 lmhmlmod1 18256 . . . . . . . . . 10  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
29283ad2ant1 1029 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  ->  S  e.  LMod )
3029ad2antrr 732 . . . . . . . 8  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  ->  S  e.  LMod )
31 inss1 3652 . . . . . . . . . . 11  |-  ( ~P ( Base `  S
)  i^i  Fin )  C_ 
~P ( Base `  S
)
3231sseli 3428 . . . . . . . . . 10  |-  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  ->  b  e.  ~P ( Base `  S
) )
33 elpwi 3960 . . . . . . . . . 10  |-  ( b  e.  ~P ( Base `  S )  ->  b  C_  ( Base `  S
) )
3432, 33syl 17 . . . . . . . . 9  |-  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  ->  b  C_  ( Base `  S
) )
3534ad2antrl 734 . . . . . . . 8  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  -> 
b  C_  ( Base `  S ) )
36 eqid 2451 . . . . . . . . 9  |-  ( LSpan `  S )  =  (
LSpan `  S )
3713, 23, 36lspcl 18199 . . . . . . . 8  |-  ( ( S  e.  LMod  /\  b  C_  ( Base `  S
) )  ->  (
( LSpan `  S ) `  b )  e.  (
LSubSp `  S ) )
3830, 35, 37syl2anc 667 . . . . . . 7  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  -> 
( ( LSpan `  S
) `  b )  e.  ( LSubSp `  S )
)
3913, 36, 8lmhmlsp 18272 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  b  C_  ( Base `  S
) )  ->  ( F " ( ( LSpan `  S ) `  b
) )  =  ( ( LSpan `  T ) `  ( F " b
) ) )
4027, 35, 39syl2anc 667 . . . . . . . 8  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  -> 
( F " (
( LSpan `  S ) `  b ) )  =  ( ( LSpan `  T
) `  ( F " b ) ) )
41 fveq2 5865 . . . . . . . . 9  |-  ( ( F " b )  =  a  ->  (
( LSpan `  T ) `  ( F " b
) )  =  ( ( LSpan `  T ) `  a ) )
4241ad2antll 735 . . . . . . . 8  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  -> 
( ( LSpan `  T
) `  ( F " b ) )  =  ( ( LSpan `  T
) `  a )
)
43 simp2rr 1078 . . . . . . . . 9  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e. 
~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i  Fin )  /\  ( F "
b )  =  a ) )  ->  (
( LSpan `  T ) `  a )  =  ran  F )
44433expa 1208 . . . . . . . 8  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  -> 
( ( LSpan `  T
) `  a )  =  ran  F )
4540, 42, 443eqtrd 2489 . . . . . . 7  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  -> 
( F " (
( LSpan `  S ) `  b ) )  =  ran  F )
4623, 24, 25, 26, 13, 27, 38, 45kercvrlsm 35941 . . . . . 6  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  -> 
( K ( LSSum `  S ) ( (
LSpan `  S ) `  b ) )  =  ( Base `  S
) )
4746oveq2d 6306 . . . . 5  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  -> 
( Ss  ( K (
LSSum `  S ) ( ( LSpan `  S ) `  b ) ) )  =  ( Ss  ( Base `  S ) ) )
4813ressid 15184 . . . . . . 7  |-  ( S  e.  LMod  ->  ( Ss  (
Base `  S )
)  =  S )
4929, 48syl 17 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  ->  ( Ss  ( Base `  S
) )  =  S )
5049ad2antrr 732 . . . . 5  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  -> 
( Ss  ( Base `  S
) )  =  S )
5147, 50eqtr2d 2486 . . . 4  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  ->  S  =  ( Ss  ( K ( LSSum `  S
) ( ( LSpan `  S ) `  b
) ) ) )
52 lmhmfgsplit.u . . . . 5  |-  U  =  ( Ss  K )
53 eqid 2451 . . . . 5  |-  ( Ss  ( ( LSpan `  S ) `  b ) )  =  ( Ss  ( ( LSpan `  S ) `  b
) )
54 eqid 2451 . . . . 5  |-  ( Ss  ( K ( LSSum `  S
) ( ( LSpan `  S ) `  b
) ) )  =  ( Ss  ( K (
LSSum `  S ) ( ( LSpan `  S ) `  b ) ) )
5526, 25, 23lmhmkerlss 18274 . . . . . . 7  |-  ( F  e.  ( S LMHom  T
)  ->  K  e.  ( LSubSp `  S )
)
56553ad2ant1 1029 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  ->  K  e.  ( LSubSp `  S ) )
5756ad2antrr 732 . . . . 5  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  ->  K  e.  ( LSubSp `  S ) )
58 simpll2 1048 . . . . 5  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  ->  U  e. LFinGen )
59 inss2 3653 . . . . . . . 8  |-  ( ~P ( Base `  S
)  i^i  Fin )  C_ 
Fin
6059sseli 3428 . . . . . . 7  |-  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  ->  b  e.  Fin )
6160ad2antrl 734 . . . . . 6  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  -> 
b  e.  Fin )
6236, 13, 53islssfgi 35930 . . . . . 6  |-  ( ( S  e.  LMod  /\  b  C_  ( Base `  S
)  /\  b  e.  Fin )  ->  ( Ss  ( ( LSpan `  S ) `  b ) )  e. LFinGen )
6330, 35, 61, 62syl3anc 1268 . . . . 5  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  -> 
( Ss  ( ( LSpan `  S ) `  b
) )  e. LFinGen )
6423, 24, 52, 53, 54, 30, 57, 38, 58, 63lsmfgcl 35932 . . . 4  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  -> 
( Ss  ( K (
LSSum `  S ) ( ( LSpan `  S ) `  b ) ) )  e. LFinGen )
6551, 64eqeltrd 2529 . . 3  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e.  ~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  /\  ( b  e.  ( ~P ( Base `  S )  i^i 
Fin )  /\  ( F " b )  =  a ) )  ->  S  e. LFinGen )
6622, 65rexlimddv 2883 . 2  |-  ( ( ( F  e.  ( S LMHom  T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  /\  ( a  e. 
~P ran  F  /\  ( a  e.  Fin  /\  ( ( LSpan `  T
) `  a )  =  ran  F ) ) )  ->  S  e. LFinGen )
6711, 66rexlimddv 2883 1  |-  ( ( F  e.  ( S LMHom 
T )  /\  U  e. LFinGen  /\  V  e. LFinGen )  ->  S  e. LFinGen )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   E.wrex 2738    i^i cin 3403    C_ wss 3404   ~Pcpw 3951   {csn 3968   `'ccnv 4833   ran crn 4835   "cima 4837    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290   Fincfn 7569   Basecbs 15121   ↾s cress 15122   0gc0g 15338   LSSumclsm 17286   LModclmod 18091   LSubSpclss 18155   LSpanclspn 18194   LMHom clmhm 18242  LFinGenclfig 35925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-sca 15206  df-vsca 15207  df-0g 15340  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-grp 16673  df-minusg 16674  df-sbg 16675  df-subg 16814  df-ghm 16881  df-cntz 16971  df-lsm 17288  df-cmn 17432  df-abl 17433  df-mgp 17724  df-ur 17736  df-ring 17782  df-lmod 18093  df-lss 18156  df-lsp 18195  df-lmhm 18245  df-lfig 35926
This theorem is referenced by:  lmhmlnmsplit  35945
  Copyright terms: Public domain W3C validator