Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmfgima Structured version   Visualization version   Unicode version

Theorem lmhmfgima 35936
Description: A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
lmhmfgima.y  |-  Y  =  ( Ts  ( F " A ) )
lmhmfgima.x  |-  X  =  ( Ss  A )
lmhmfgima.u  |-  U  =  ( LSubSp `  S )
lmhmfgima.xf  |-  ( ph  ->  X  e. LFinGen )
lmhmfgima.a  |-  ( ph  ->  A  e.  U )
lmhmfgima.f  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
Assertion
Ref Expression
lmhmfgima  |-  ( ph  ->  Y  e. LFinGen )

Proof of Theorem lmhmfgima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 lmhmfgima.y . 2  |-  Y  =  ( Ts  ( F " A ) )
2 lmhmfgima.xf . . . 4  |-  ( ph  ->  X  e. LFinGen )
3 lmhmfgima.f . . . . . 6  |-  ( ph  ->  F  e.  ( S LMHom 
T ) )
4 lmhmlmod1 18249 . . . . . 6  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
53, 4syl 17 . . . . 5  |-  ( ph  ->  S  e.  LMod )
6 lmhmfgima.a . . . . 5  |-  ( ph  ->  A  e.  U )
7 lmhmfgima.x . . . . . 6  |-  X  =  ( Ss  A )
8 lmhmfgima.u . . . . . 6  |-  U  =  ( LSubSp `  S )
9 eqid 2450 . . . . . 6  |-  ( LSpan `  S )  =  (
LSpan `  S )
10 eqid 2450 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
117, 8, 9, 10islssfg2 35923 . . . . 5  |-  ( ( S  e.  LMod  /\  A  e.  U )  ->  ( X  e. LFinGen  <->  E. x  e.  ( ~P ( Base `  S
)  i^i  Fin )
( ( LSpan `  S
) `  x )  =  A ) )
125, 6, 11syl2anc 666 . . . 4  |-  ( ph  ->  ( X  e. LFinGen  <->  E. x  e.  ( ~P ( Base `  S )  i^i  Fin ) ( ( LSpan `  S ) `  x
)  =  A ) )
132, 12mpbid 214 . . 3  |-  ( ph  ->  E. x  e.  ( ~P ( Base `  S
)  i^i  Fin )
( ( LSpan `  S
) `  x )  =  A )
14 inss1 3651 . . . . . . . . . 10  |-  ( ~P ( Base `  S
)  i^i  Fin )  C_ 
~P ( Base `  S
)
1514sseli 3427 . . . . . . . . 9  |-  ( x  e.  ( ~P ( Base `  S )  i^i 
Fin )  ->  x  e.  ~P ( Base `  S
) )
1615elpwid 3960 . . . . . . . 8  |-  ( x  e.  ( ~P ( Base `  S )  i^i 
Fin )  ->  x  C_  ( Base `  S
) )
17 eqid 2450 . . . . . . . . 9  |-  ( LSpan `  T )  =  (
LSpan `  T )
1810, 9, 17lmhmlsp 18265 . . . . . . . 8  |-  ( ( F  e.  ( S LMHom 
T )  /\  x  C_  ( Base `  S
) )  ->  ( F " ( ( LSpan `  S ) `  x
) )  =  ( ( LSpan `  T ) `  ( F " x
) ) )
193, 16, 18syl2an 480 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( F " ( ( LSpan `  S
) `  x )
)  =  ( (
LSpan `  T ) `  ( F " x ) ) )
2019oveq2d 6304 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( Ts  ( F " ( ( LSpan `  S ) `  x
) ) )  =  ( Ts  ( ( LSpan `  T ) `  ( F " x ) ) ) )
21 lmhmlmod2 18248 . . . . . . . . 9  |-  ( F  e.  ( S LMHom  T
)  ->  T  e.  LMod )
223, 21syl 17 . . . . . . . 8  |-  ( ph  ->  T  e.  LMod )
2322adantr 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  T  e.  LMod )
24 imassrn 5178 . . . . . . . . 9  |-  ( F
" x )  C_  ran  F
25 eqid 2450 . . . . . . . . . . . 12  |-  ( Base `  T )  =  (
Base `  T )
2610, 25lmhmf 18250 . . . . . . . . . . 11  |-  ( F  e.  ( S LMHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
273, 26syl 17 . . . . . . . . . 10  |-  ( ph  ->  F : ( Base `  S ) --> ( Base `  T ) )
28 frn 5733 . . . . . . . . . 10  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  ran  F  C_  ( Base `  T )
)
2927, 28syl 17 . . . . . . . . 9  |-  ( ph  ->  ran  F  C_  ( Base `  T ) )
3024, 29syl5ss 3442 . . . . . . . 8  |-  ( ph  ->  ( F " x
)  C_  ( Base `  T ) )
3130adantr 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( F " x )  C_  ( Base `  T ) )
32 inss2 3652 . . . . . . . . . 10  |-  ( ~P ( Base `  S
)  i^i  Fin )  C_ 
Fin
3332sseli 3427 . . . . . . . . 9  |-  ( x  e.  ( ~P ( Base `  S )  i^i 
Fin )  ->  x  e.  Fin )
3433adantl 468 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  x  e.  Fin )
35 ffun 5729 . . . . . . . . . . 11  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  Fun  F )
3627, 35syl 17 . . . . . . . . . 10  |-  ( ph  ->  Fun  F )
3736adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  Fun  F )
3816adantl 468 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  x  C_  ( Base `  S ) )
39 fdm 5731 . . . . . . . . . . . 12  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  dom  F  =  ( Base `  S
) )
4027, 39syl 17 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  =  (
Base `  S )
)
4140adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  dom  F  =  ( Base `  S
) )
4238, 41sseqtr4d 3468 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  x  C_  dom  F )
43 fores 5800 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  C_ 
dom  F )  -> 
( F  |`  x
) : x -onto-> ( F " x ) )
4437, 42, 43syl2anc 666 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( F  |`  x ) : x
-onto-> ( F " x
) )
45 fofi 7857 . . . . . . . 8  |-  ( ( x  e.  Fin  /\  ( F  |`  x ) : x -onto-> ( F
" x ) )  ->  ( F "
x )  e.  Fin )
4634, 44, 45syl2anc 666 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( F " x )  e.  Fin )
47 eqid 2450 . . . . . . . 8  |-  ( Ts  ( ( LSpan `  T ) `  ( F " x
) ) )  =  ( Ts  ( ( LSpan `  T ) `  ( F " x ) ) )
4817, 25, 47islssfgi 35924 . . . . . . 7  |-  ( ( T  e.  LMod  /\  ( F " x )  C_  ( Base `  T )  /\  ( F " x
)  e.  Fin )  ->  ( Ts  ( ( LSpan `  T ) `  ( F " x ) ) )  e. LFinGen )
4923, 31, 46, 48syl3anc 1267 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( Ts  (
( LSpan `  T ) `  ( F " x
) ) )  e. LFinGen )
5020, 49eqeltrd 2528 . . . . 5  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( Ts  ( F " ( ( LSpan `  S ) `  x
) ) )  e. LFinGen )
51 imaeq2 5163 . . . . . . 7  |-  ( ( ( LSpan `  S ) `  x )  =  A  ->  ( F "
( ( LSpan `  S
) `  x )
)  =  ( F
" A ) )
5251oveq2d 6304 . . . . . 6  |-  ( ( ( LSpan `  S ) `  x )  =  A  ->  ( Ts  ( F
" ( ( LSpan `  S ) `  x
) ) )  =  ( Ts  ( F " A ) ) )
5352eleq1d 2512 . . . . 5  |-  ( ( ( LSpan `  S ) `  x )  =  A  ->  ( ( Ts  ( F " ( (
LSpan `  S ) `  x ) ) )  e. LFinGen 
<->  ( Ts  ( F " A ) )  e. LFinGen ) )
5450, 53syl5ibcom 224 . . . 4  |-  ( (
ph  /\  x  e.  ( ~P ( Base `  S
)  i^i  Fin )
)  ->  ( (
( LSpan `  S ) `  x )  =  A  ->  ( Ts  ( F
" A ) )  e. LFinGen ) )
5554rexlimdva 2878 . . 3  |-  ( ph  ->  ( E. x  e.  ( ~P ( Base `  S )  i^i  Fin ) ( ( LSpan `  S ) `  x
)  =  A  -> 
( Ts  ( F " A ) )  e. LFinGen ) )
5613, 55mpd 15 . 2  |-  ( ph  ->  ( Ts  ( F " A ) )  e. LFinGen )
571, 56syl5eqel 2532 1  |-  ( ph  ->  Y  e. LFinGen )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1443    e. wcel 1886   E.wrex 2737    i^i cin 3402    C_ wss 3403   ~Pcpw 3950   dom cdm 4833   ran crn 4834    |` cres 4835   "cima 4836   Fun wfun 5575   -->wf 5577   -onto->wfo 5579   ` cfv 5581  (class class class)co 6288   Fincfn 7566   Basecbs 15114   ↾s cress 15115   LModclmod 18084   LSubSpclss 18148   LSpanclspn 18187   LMHom clmhm 18235  LFinGenclfig 35919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-nn 10607  df-2 10665  df-3 10666  df-4 10667  df-5 10668  df-6 10669  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-sca 15199  df-vsca 15200  df-0g 15333  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-grp 16666  df-minusg 16667  df-sbg 16668  df-subg 16807  df-ghm 16874  df-mgp 17717  df-ur 17729  df-ring 17775  df-lmod 18086  df-lss 18149  df-lsp 18188  df-lmhm 18238  df-lfig 35920
This theorem is referenced by:  lnmepi  35937
  Copyright terms: Public domain W3C validator