MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmfval Structured version   Unicode version

Theorem lmfval 18963
Description: The relation "sequence  f converges to point  y " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
lmfval  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Distinct variable groups:    y, f, x, X    u, f, J, x, y
Allowed substitution hint:    X( u)

Proof of Theorem lmfval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 df-lm 18960 . . 3  |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
21a1i 11 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ~~> t  =  ( j  e.  Top  |->  {
<. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } ) )
3 simpr 461 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  j  =  J )
43unieqd 4204 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  U. j  =  U. J )
5 toponuni 18659 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
65adantr 465 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  X  =  U. J )
74, 6eqtr4d 2496 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  U. j  =  X )
87oveq1d 6210 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  ( U. j  ^pm  CC )  =  ( X  ^pm  CC ) )
98eleq2d 2522 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
f  e.  ( U. j  ^pm  CC )  <->  f  e.  ( X  ^pm  CC ) ) )
107eleq2d 2522 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
x  e.  U. j  <->  x  e.  X ) )
113raleqdv 3023 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  ( A. u  e.  j 
( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  <->  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) )
129, 10, 113anbi123d 1290 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) )  <->  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) ) )
1312opabbidv 4458 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
14 topontop 18658 . 2  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
15 df-3an 967 . . . . 5  |-  ( ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) )  <->  ( (
f  e.  ( X 
^pm  CC )  /\  x  e.  X )  /\  A. u  e.  J  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) )
1615opabbii 4459 . . . 4  |-  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }  =  { <. f ,  x >.  |  (
( f  e.  ( X  ^pm  CC )  /\  x  e.  X
)  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }
17 opabssxp 5014 . . . 4  |-  { <. f ,  x >.  |  ( ( f  e.  ( X  ^pm  CC )  /\  x  e.  X
)  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } 
C_  ( ( X 
^pm  CC )  X.  X
)
1816, 17eqsstri 3489 . . 3  |-  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } 
C_  ( ( X 
^pm  CC )  X.  X
)
19 ovex 6220 . . . 4  |-  ( X 
^pm  CC )  e.  _V
20 toponmax 18660 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
21 xpexg 6612 . . . 4  |-  ( ( ( X  ^pm  CC )  e.  _V  /\  X  e.  J )  ->  (
( X  ^pm  CC )  X.  X )  e. 
_V )
2219, 20, 21sylancr 663 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( ( X  ^pm  CC )  X.  X )  e.  _V )
23 ssexg 4541 . . 3  |-  ( ( { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }  C_  ( ( X  ^pm  CC )  X.  X )  /\  ( ( X 
^pm  CC )  X.  X
)  e.  _V )  ->  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }  e.  _V )
2418, 22, 23sylancr 663 . 2  |-  ( J  e.  (TopOn `  X
)  ->  { <. f ,  x >.  |  (
f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }  e.  _V )
252, 13, 14, 24fvmptd 5883 1  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2796   E.wrex 2797   _Vcvv 3072    C_ wss 3431   U.cuni 4194   {copab 4452    |-> cmpt 4453    X. cxp 4941   ran crn 4944    |` cres 4945   -->wf 5517   ` cfv 5521  (class class class)co 6195    ^pm cpm 7320   CCcc 9386   ZZ>=cuz 10967   Topctop 18625  TopOnctopon 18626   ~~> tclm 18957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-iota 5484  df-fun 5523  df-fv 5529  df-ov 6198  df-top 18630  df-topon 18633  df-lm 18960
This theorem is referenced by:  lmbr  18989  sslm  19030
  Copyright terms: Public domain W3C validator