MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcvg Structured version   Unicode version

Theorem lmcvg 20220
Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmcvg.1  |-  Z  =  ( ZZ>= `  M )
lmcvg.3  |-  ( ph  ->  P  e.  U )
lmcvg.4  |-  ( ph  ->  M  e.  ZZ )
lmcvg.5  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcvg.6  |-  ( ph  ->  U  e.  J )
Assertion
Ref Expression
lmcvg  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U )
Distinct variable groups:    j, k, F    j, J, k    P, j, k    ph, j, k    U, j, k    j, M   
j, Z, k
Allowed substitution hint:    M( k)

Proof of Theorem lmcvg
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 lmcvg.6 . 2  |-  ( ph  ->  U  e.  J )
2 lmcvg.5 . . . . 5  |-  ( ph  ->  F ( ~~> t `  J ) P )
3 lmrcl 20189 . . . . . . . 8  |-  ( F ( ~~> t `  J
) P  ->  J  e.  Top )
42, 3syl 17 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
5 eqid 2428 . . . . . . . 8  |-  U. J  =  U. J
65toptopon 19890 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
74, 6sylib 199 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
8 lmcvg.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
9 lmcvg.4 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
107, 8, 9lmbr2 20217 . . . . 5  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e. 
U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
112, 10mpbid 213 . . . 4  |-  ( ph  ->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e.  U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) )
1211simp3d 1019 . . 3  |-  ( ph  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
13 simpr 462 . . . . . . 7  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  ->  ( F `  k )  e.  u
)
1413ralimi 2758 . . . . . 6  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u )  ->  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )
1514reximi 2832 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )
1615imim2i 16 . . . 4  |-  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) )  ->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) )
1716ralimi 2758 . . 3  |-  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )
1812, 17syl 17 . 2  |-  ( ph  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )
19 lmcvg.3 . 2  |-  ( ph  ->  P  e.  U )
20 eleq2 2495 . . . 4  |-  ( u  =  U  ->  ( P  e.  u  <->  P  e.  U ) )
21 eleq2 2495 . . . . 5  |-  ( u  =  U  ->  (
( F `  k
)  e.  u  <->  ( F `  k )  e.  U
) )
2221rexralbidv 2886 . . . 4  |-  ( u  =  U  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  U ) )
2320, 22imbi12d 321 . . 3  |-  ( u  =  U  ->  (
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  <->  ( P  e.  U  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  U ) ) )
2423rspcv 3121 . 2  |-  ( U  e.  J  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  -> 
( P  e.  U  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U ) ) )
251, 18, 19, 24syl3c 63 1  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   A.wral 2714   E.wrex 2715   U.cuni 4162   class class class wbr 4366   dom cdm 4796   ` cfv 5544  (class class class)co 6249    ^pm cpm 7428   CCcc 9488   ZZcz 10888   ZZ>=cuz 11110   Topctop 19859  TopOnctopon 19860   ~~> tclm 20184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547  ax-pre-lttri 9564  ax-pre-lttrn 9565
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-po 4717  df-so 4718  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-1st 6751  df-2nd 6752  df-er 7318  df-pm 7430  df-en 7525  df-dom 7526  df-sdom 7527  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-neg 9814  df-z 10889  df-uz 11111  df-top 19863  df-topon 19865  df-lm 20187
This theorem is referenced by:  lmmo  20338  1stccnp  20419  1stckgenlem  20510  iscmet3lem2  22204
  Copyright terms: Public domain W3C validator