MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmconst Structured version   Unicode version

Theorem lmconst 19528
Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmconst.2  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
lmconst  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) ( ~~> t `  J ) P )

Proof of Theorem lmconst
Dummy variables  j 
k  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 997 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  P  e.  X )
2 simp3 998 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  ZZ )
3 uzid 11092 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
42, 3syl 16 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  ( ZZ>= `  M )
)
5 lmconst.2 . . . . 5  |-  Z  =  ( ZZ>= `  M )
64, 5syl6eleqr 2566 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  M  e.  Z )
7 idd 24 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( P  e.  u  ->  P  e.  u ) )
87ralrimdva 2882 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( P  e.  u  ->  A. k  e.  ( ZZ>= `  M ) P  e.  u ) )
9 fveq2 5864 . . . . . 6  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
109raleqdv 3064 . . . . 5  |-  ( j  =  M  ->  ( A. k  e.  ( ZZ>=
`  j ) P  e.  u  <->  A. k  e.  ( ZZ>= `  M ) P  e.  u )
)
1110rspcev 3214 . . . 4  |-  ( ( M  e.  Z  /\  A. k  e.  ( ZZ>= `  M ) P  e.  u )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
126, 8, 11syl6an 545 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u ) )
1312ralrimivw 2879 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
)
14 simp1 996 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  J  e.  (TopOn `  X )
)
15 fconst6g 5772 . . . 4  |-  ( P  e.  X  ->  ( Z  X.  { P }
) : Z --> X )
161, 15syl 16 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) : Z --> X )
17 fvconst2g 6112 . . . 4  |-  ( ( P  e.  X  /\  k  e.  Z )  ->  ( ( Z  X.  { P } ) `  k )  =  P )
181, 17sylan 471 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  /\  k  e.  Z )  ->  (
( Z  X.  { P } ) `  k
)  =  P )
1914, 5, 2, 16, 18lmbrf 19527 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  (
( Z  X.  { P } ) ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) P  e.  u )
) ) )
201, 13, 19mpbir2and 920 1  |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P }
) ( ~~> t `  J ) P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   {csn 4027   class class class wbr 4447    X. cxp 4997   -->wf 5582   ` cfv 5586   ZZcz 10860   ZZ>=cuz 11078  TopOnctopon 19162   ~~> tclm 19493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-pre-lttri 9562  ax-pre-lttrn 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-er 7308  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-neg 9804  df-z 10861  df-uz 11079  df-top 19166  df-topon 19169  df-lm 19496
This theorem is referenced by:  hlim0  25829  occllem  25897  nlelchi  26656  hmopidmchi  26746  esumcvg  27732
  Copyright terms: Public domain W3C validator