MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmclim Structured version   Unicode version

Theorem lmclim 21609
Description: Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmclim.2  |-  J  =  ( TopOpen ` fld )
lmclim.3  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
lmclim  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( CC  ^pm  CC )  /\  F  ~~>  P ) ) )

Proof of Theorem lmclim
Dummy variables  j 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anass 977 . . 3  |-  ( ( F  e.  ( CC 
^pm  CC )  /\  P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
)  <->  ( F  e.  ( CC  ^pm  CC )  /\  ( P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
) ) )
2 lmclim.3 . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
32uztrn2 11111 . . . . . . . . . 10  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
4 3anass 977 . . . . . . . . . . 11  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  ( k  e.  dom  F  /\  ( ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
) )
5 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  ->  Z  C_  dom  F )
65sselda 3509 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  k  e.  Z )  ->  k  e.  dom  F )
76biantrurd 508 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  ( k  e.  dom  F  /\  ( ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
) ) )
8 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
98cnmetdval 21146 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  k
)  e.  CC  /\  P  e.  CC )  ->  ( ( F `  k ) ( abs 
o.  -  ) P
)  =  ( abs `  ( ( F `  k )  -  P
) ) )
109ancoms 453 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  CC  /\  ( F `  k )  e.  CC )  -> 
( ( F `  k ) ( abs 
o.  -  ) P
)  =  ( abs `  ( ( F `  k )  -  P
) ) )
1110breq1d 4463 . . . . . . . . . . . . . 14  |-  ( ( P  e.  CC  /\  ( F `  k )  e.  CC )  -> 
( ( ( F `
 k ) ( abs  o.  -  ) P )  <  x  <->  ( abs `  ( ( F `  k )  -  P ) )  <  x ) )
1211pm5.32da 641 . . . . . . . . . . . . 13  |-  ( P  e.  CC  ->  (
( ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  P ) )  <  x ) ) )
1312ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  P ) )  <  x ) ) )
147, 13bitr3d 255 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  k  e.  Z )  ->  (
( k  e.  dom  F  /\  ( ( F `
 k )  e.  CC  /\  ( ( F `  k ) ( abs  o.  -  ) P )  <  x
) )  <->  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  P
) )  <  x
) ) )
154, 14syl5bb 257 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  k  e.  Z )  ->  (
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  P ) )  <  x ) ) )
163, 15sylan2 474 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  (
( F `  k
) ( abs  o.  -  ) P )  <  x )  <->  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  P
) )  <  x
) ) )
1716anassrs 648 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  Z  C_ 
dom  F )  /\  P  e.  CC )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  P ) )  <  x ) ) )
1817ralbidva 2903 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  P ) )  < 
x ) ) )
1918rexbidva 2975 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  P ) )  < 
x ) ) )
2019ralbidv 2906 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  P  e.  CC )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  P ) )  <  x ) ) )
2120pm5.32da 641 . . . 4  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( ( P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
)  <->  ( P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  P ) )  <  x ) ) ) )
2221anbi2d 703 . . 3  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( ( F  e.  ( CC  ^pm  CC )  /\  ( P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
) )  <->  ( F  e.  ( CC  ^pm  CC )  /\  ( P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  P ) )  <  x ) ) ) ) )
231, 22syl5bb 257 . 2  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( ( F  e.  ( CC  ^pm  CC )  /\  P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  ( ( F `  k ) ( abs 
o.  -  ) P
)  <  x )
)  <->  ( F  e.  ( CC  ^pm  CC )  /\  ( P  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  P ) )  <  x ) ) ) ) )
24 lmclim.2 . . . 4  |-  J  =  ( TopOpen ` fld )
2524cnfldtopn 21157 . . 3  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
26 cnxmet 21148 . . . 4  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
2726a1i 11 . . 3  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
28 simpl 457 . . 3  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  M  e.  ZZ )
2925, 27, 2, 28lmmbr3 21567 . 2  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( CC  ^pm  CC )  /\  P  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  CC  /\  (
( F `  k
) ( abs  o.  -  ) P )  <  x ) ) ) )
30 simpll 753 . . . 4  |-  ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  F  e.  ( CC  ^pm  CC )
)  ->  M  e.  ZZ )
31 simpr 461 . . . 4  |-  ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  F  e.  ( CC  ^pm  CC )
)  ->  F  e.  ( CC  ^pm  CC ) )
32 eqidd 2468 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  F  e.  ( CC  ^pm  CC ) )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
332, 30, 31, 32clim2 13307 . . 3  |-  ( ( ( M  e.  ZZ  /\  Z  C_  dom  F )  /\  F  e.  ( CC  ^pm  CC )
)  ->  ( F  ~~>  P 
<->  ( P  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  P ) )  < 
x ) ) ) )
3433pm5.32da 641 . 2  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( ( F  e.  ( CC  ^pm  CC )  /\  F  ~~>  P )  <-> 
( F  e.  ( CC  ^pm  CC )  /\  ( P  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  P ) )  < 
x ) ) ) ) )
3523, 29, 343bitr4d 285 1  |-  ( ( M  e.  ZZ  /\  Z  C_  dom  F )  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( CC  ^pm  CC )  /\  F  ~~>  P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818    C_ wss 3481   class class class wbr 4453   dom cdm 5005    o. ccom 5009   ` cfv 5594  (class class class)co 6295    ^pm cpm 7433   CCcc 9502    < clt 9640    - cmin 9817   ZZcz 10876   ZZ>=cuz 11094   RR+crp 11232   abscabs 13047    ~~> cli 13287   TopOpenctopn 14694   *Metcxmt 18273  ℂfldccnfld 18290   ~~> tclm 19595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-fz 11685  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-clim 13291  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-plusg 14585  df-mulr 14586  df-starv 14587  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-rest 14695  df-topn 14696  df-topgen 14716  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-lm 19598
This theorem is referenced by:  lmclimf  21610
  Copyright terms: Public domain W3C validator