MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcld Structured version   Unicode version

Theorem lmcld 19042
Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013.)
Hypotheses
Ref Expression
lmff.1  |-  Z  =  ( ZZ>= `  M )
lmff.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmff.4  |-  ( ph  ->  M  e.  ZZ )
lmcls.5  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcls.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  S )
lmcld.8  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
Assertion
Ref Expression
lmcld  |-  ( ph  ->  P  e.  S )
Distinct variable groups:    k, F    k, J    k, M    P, k    S, k    ph, k    k, X    k, Z

Proof of Theorem lmcld
StepHypRef Expression
1 lmff.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 lmff.3 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 lmff.4 . . 3  |-  ( ph  ->  M  e.  ZZ )
4 lmcls.5 . . 3  |-  ( ph  ->  F ( ~~> t `  J ) P )
5 lmcls.7 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  S )
6 lmcld.8 . . . . 5  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
7 eqid 2454 . . . . . 6  |-  U. J  =  U. J
87cldss 18768 . . . . 5  |-  ( S  e.  ( Clsd `  J
)  ->  S  C_  U. J
)
96, 8syl 16 . . . 4  |-  ( ph  ->  S  C_  U. J )
10 toponuni 18667 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
112, 10syl 16 . . . 4  |-  ( ph  ->  X  =  U. J
)
129, 11sseqtr4d 3504 . . 3  |-  ( ph  ->  S  C_  X )
131, 2, 3, 4, 5, 12lmcls 19041 . 2  |-  ( ph  ->  P  e.  ( ( cls `  J ) `
 S ) )
14 cldcls 18781 . . 3  |-  ( S  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  S )  =  S )
156, 14syl 16 . 2  |-  ( ph  ->  ( ( cls `  J
) `  S )  =  S )
1613, 15eleqtrd 2544 1  |-  ( ph  ->  P  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    C_ wss 3439   U.cuni 4202   class class class wbr 4403   ` cfv 5529   ZZcz 10760   ZZ>=cuz 10975  TopOnctopon 18634   Clsdccld 18755   clsccl 18757   ~~> tclm 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-pre-lttri 9470  ax-pre-lttrn 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-po 4752  df-so 4753  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-er 7214  df-pm 7330  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-neg 9712  df-z 10761  df-uz 10976  df-top 18638  df-topon 18641  df-cld 18758  df-ntr 18759  df-cls 18760  df-lm 18968
This theorem is referenced by:  1stckgen  19262  lmle  20947
  Copyright terms: Public domain W3C validator