MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmbrf Structured version   Unicode version

Theorem lmbrf 19527
Description: Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary upper set of integers. This version of lmbr2 19526 presupposes that  F is a function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmbr2.4  |-  Z  =  ( ZZ>= `  M )
lmbr2.5  |-  ( ph  ->  M  e.  ZZ )
lmbrf.6  |-  ( ph  ->  F : Z --> X )
lmbrf.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
Assertion
Ref Expression
lmbrf  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
Distinct variable groups:    j, k, u, F    j, J, k, u    ph, j, k, u   
j, Z, k, u   
j, M    P, j,
k, u    j, X, k, u
Allowed substitution hints:    A( u, j, k)    M( u, k)

Proof of Theorem lmbrf
StepHypRef Expression
1 lmbr.2 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 lmbr2.4 . . 3  |-  Z  =  ( ZZ>= `  M )
3 lmbr2.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
41, 2, 3lmbr2 19526 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
5 3anass 977 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) )
62uztrn2 11095 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
7 lmbrf.7 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
87eleq1d 2536 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  A  e.  u ) )
9 lmbrf.6 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : Z --> X )
10 fdm 5733 . . . . . . . . . . . . . . . 16  |-  ( F : Z --> X  ->  dom  F  =  Z )
119, 10syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  F  =  Z )
1211eleq2d 2537 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  dom  F  <-> 
k  e.  Z ) )
1312biimpar 485 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  dom  F )
1413biantrurd 508 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
158, 14bitr3d 255 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
166, 15sylan2 474 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( A  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
1716anassrs 648 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A  e.  u  <->  ( k  e. 
dom  F  /\  ( F `  k )  e.  u ) ) )
1817ralbidva 2900 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A  e.  u  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
1918rexbidva 2970 . . . . . . 7  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
2019imbi2d 316 . . . . . 6  |-  ( ph  ->  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )  <->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2120ralbidv 2903 . . . . 5  |-  ( ph  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2221anbi2d 703 . . . 4  |-  ( ph  ->  ( ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
)  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) )
23 toponmax 19196 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
241, 23syl 16 . . . . . . 7  |-  ( ph  ->  X  e.  J )
25 cnex 9569 . . . . . . 7  |-  CC  e.  _V
2624, 25jctir 538 . . . . . 6  |-  ( ph  ->  ( X  e.  J  /\  CC  e.  _V )
)
27 uzssz 11097 . . . . . . . . 9  |-  ( ZZ>= `  M )  C_  ZZ
28 zsscn 10868 . . . . . . . . 9  |-  ZZ  C_  CC
2927, 28sstri 3513 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  CC
302, 29eqsstri 3534 . . . . . . 7  |-  Z  C_  CC
319, 30jctir 538 . . . . . 6  |-  ( ph  ->  ( F : Z --> X  /\  Z  C_  CC ) )
32 elpm2r 7433 . . . . . 6  |-  ( ( ( X  e.  J  /\  CC  e.  _V )  /\  ( F : Z --> X  /\  Z  C_  CC ) )  ->  F  e.  ( X  ^pm  CC ) )
3326, 31, 32syl2anc 661 . . . . 5  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
3433biantrurd 508 . . . 4  |-  ( ph  ->  ( ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) ) )
3522, 34bitr2d 254 . . 3  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) )  <-> 
( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A  e.  u ) ) ) )
365, 35syl5bb 257 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
374, 36bitrd 253 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    C_ wss 3476   class class class wbr 4447   dom cdm 4999   -->wf 5582   ` cfv 5586  (class class class)co 6282    ^pm cpm 7418   CCcc 9486   ZZcz 10860   ZZ>=cuz 11078  TopOnctopon 19162   ~~> tclm 19493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-pre-lttri 9562  ax-pre-lttrn 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-er 7308  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-neg 9804  df-z 10861  df-uz 11079  df-top 19166  df-topon 19169  df-lm 19496
This theorem is referenced by:  lmconst  19528  lmss  19565  1stcelcls  19728  txlm  19884  lmflf  20241  lmxrge0  27570
  Copyright terms: Public domain W3C validator