MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmbrf Structured version   Unicode version

Theorem lmbrf 19928
Description: Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary upper set of integers. This version of lmbr2 19927 presupposes that  F is a function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmbr2.4  |-  Z  =  ( ZZ>= `  M )
lmbr2.5  |-  ( ph  ->  M  e.  ZZ )
lmbrf.6  |-  ( ph  ->  F : Z --> X )
lmbrf.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
Assertion
Ref Expression
lmbrf  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
Distinct variable groups:    j, k, u, F    j, J, k, u    ph, j, k, u   
j, Z, k, u   
j, M    P, j,
k, u    j, X, k, u
Allowed substitution hints:    A( u, j, k)    M( u, k)

Proof of Theorem lmbrf
StepHypRef Expression
1 lmbr.2 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 lmbr2.4 . . 3  |-  Z  =  ( ZZ>= `  M )
3 lmbr2.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
41, 2, 3lmbr2 19927 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
5 3anass 975 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) )
62uztrn2 11099 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
7 lmbrf.7 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
87eleq1d 2523 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  A  e.  u ) )
9 lmbrf.6 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : Z --> X )
10 fdm 5717 . . . . . . . . . . . . . . . 16  |-  ( F : Z --> X  ->  dom  F  =  Z )
119, 10syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  F  =  Z )
1211eleq2d 2524 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( k  e.  dom  F  <-> 
k  e.  Z ) )
1312biimpar 483 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  dom  F )
1413biantrurd 506 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
158, 14bitr3d 255 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
166, 15sylan2 472 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( A  e.  u  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
1716anassrs 646 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A  e.  u  <->  ( k  e. 
dom  F  /\  ( F `  k )  e.  u ) ) )
1817ralbidva 2890 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A  e.  u  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
1918rexbidva 2962 . . . . . . 7  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
2019imbi2d 314 . . . . . 6  |-  ( ph  ->  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )  <->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2120ralbidv 2893 . . . . 5  |-  ( ph  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2221anbi2d 701 . . . 4  |-  ( ph  ->  ( ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
)  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) )
23 toponmax 19596 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
241, 23syl 16 . . . . . . 7  |-  ( ph  ->  X  e.  J )
25 cnex 9562 . . . . . . 7  |-  CC  e.  _V
2624, 25jctir 536 . . . . . 6  |-  ( ph  ->  ( X  e.  J  /\  CC  e.  _V )
)
27 uzssz 11101 . . . . . . . . 9  |-  ( ZZ>= `  M )  C_  ZZ
28 zsscn 10868 . . . . . . . . 9  |-  ZZ  C_  CC
2927, 28sstri 3498 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  CC
302, 29eqsstri 3519 . . . . . . 7  |-  Z  C_  CC
319, 30jctir 536 . . . . . 6  |-  ( ph  ->  ( F : Z --> X  /\  Z  C_  CC ) )
32 elpm2r 7429 . . . . . 6  |-  ( ( ( X  e.  J  /\  CC  e.  _V )  /\  ( F : Z --> X  /\  Z  C_  CC ) )  ->  F  e.  ( X  ^pm  CC ) )
3326, 31, 32syl2anc 659 . . . . 5  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
3433biantrurd 506 . . . 4  |-  ( ph  ->  ( ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) ) ) )
3522, 34bitr2d 254 . . 3  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) )  <-> 
( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A  e.  u ) ) ) )
365, 35syl5bb 257 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
374, 36bitrd 253 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   _Vcvv 3106    C_ wss 3461   class class class wbr 4439   dom cdm 4988   -->wf 5566   ` cfv 5570  (class class class)co 6270    ^pm cpm 7413   CCcc 9479   ZZcz 10860   ZZ>=cuz 11082  TopOnctopon 19562   ~~> tclm 19894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-pre-lttri 9555  ax-pre-lttrn 9556
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-er 7303  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-neg 9799  df-z 10861  df-uz 11083  df-top 19566  df-topon 19569  df-lm 19897
This theorem is referenced by:  lmconst  19929  lmss  19966  1stcelcls  20128  txlm  20315  lmflf  20672  lmxrge0  28169
  Copyright terms: Public domain W3C validator