Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyrest Structured version   Visualization version   Unicode version

Theorem llyrest 20577
 Description: An open subspace of a locally space is also locally . (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyrest Locally t Locally

Proof of Theorem llyrest
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 20564 . . 3 Locally
2 resttop 20253 . . 3 t
31, 2sylan 479 . 2 Locally t
4 restopn2 20270 . . . . 5 t
51, 4sylan 479 . . . 4 Locally t
6 simp1l 1054 . . . . . . . . 9 Locally Locally
7 simp2l 1056 . . . . . . . . 9 Locally
8 simp3 1032 . . . . . . . . 9 Locally
9 llyi 20566 . . . . . . . . 9 Locally t
106, 7, 8, 9syl3anc 1292 . . . . . . . 8 Locally t
11 simprl 772 . . . . . . . . . . . . 13 Locally t
12 simprr1 1078 . . . . . . . . . . . . . 14 Locally t
13 simpl2r 1084 . . . . . . . . . . . . . 14 Locally t
1412, 13sstrd 3428 . . . . . . . . . . . . 13 Locally t
156, 1syl 17 . . . . . . . . . . . . . . 15 Locally
1615adantr 472 . . . . . . . . . . . . . 14 Locally t
17 simpl1r 1082 . . . . . . . . . . . . . 14 Locally t
18 restopn2 20270 . . . . . . . . . . . . . 14 t
1916, 17, 18syl2anc 673 . . . . . . . . . . . . 13 Locally t t
2011, 14, 19mpbir2and 936 . . . . . . . . . . . 12 Locally t t
21 selpw 3949 . . . . . . . . . . . . 13
2212, 21sylibr 217 . . . . . . . . . . . 12 Locally t
2320, 22elind 3609 . . . . . . . . . . 11 Locally t t
24 simprr2 1079 . . . . . . . . . . 11 Locally t
25 restabs 20258 . . . . . . . . . . . . 13 t t t
2616, 14, 17, 25syl3anc 1292 . . . . . . . . . . . 12 Locally t t t t
27 simprr3 1080 . . . . . . . . . . . 12 Locally t t
2826, 27eqeltrd 2549 . . . . . . . . . . 11 Locally t t t
2923, 24, 28jca32 544 . . . . . . . . . 10 Locally t t t t
3029ex 441 . . . . . . . . 9 Locally t t t t
3130reximdv2 2855 . . . . . . . 8 Locally t t t t
3210, 31mpd 15 . . . . . . 7 Locally t t t
33323expa 1231 . . . . . 6 Locally t t t
3433ralrimiva 2809 . . . . 5 Locally t t t
3534ex 441 . . . 4 Locally t t t
365, 35sylbid 223 . . 3 Locally t t t t
3736ralrimiv 2808 . 2 Locally t t t t
38 islly 20560 . 2 t Locally t t t t t
393, 37, 38sylanbrc 677 1 Locally t Locally
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189   wa 376   w3a 1007   wceq 1452   wcel 1904  wral 2756  wrex 2757   cin 3389   wss 3390  cpw 3942  (class class class)co 6308   ↾t crest 15397  ctop 19994  Locally clly 20556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-oadd 7204  df-er 7381  df-en 7588  df-fin 7591  df-fi 7943  df-rest 15399  df-topgen 15420  df-top 19998  df-bases 19999  df-topon 20000  df-lly 20558 This theorem is referenced by:  loclly  20579  llyidm  20580
 Copyright terms: Public domain W3C validator