MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyrest Structured version   Unicode version

Theorem llyrest 20486
Description: An open subspace of a locally  A space is also locally  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyrest  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  ( Jt  B )  e. Locally  A )

Proof of Theorem llyrest
Dummy variables  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 20473 . . 3  |-  ( J  e. Locally  A  ->  J  e. 
Top )
2 resttop 20162 . . 3  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  ( Jt  B )  e.  Top )
31, 2sylan 473 . 2  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  ( Jt  B )  e.  Top )
4 restopn2 20179 . . . . 5  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  ( x  e.  ( Jt  B )  <->  ( x  e.  J  /\  x  C_  B ) ) )
51, 4sylan 473 . . . 4  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  ( x  e.  ( Jt  B )  <->  ( x  e.  J  /\  x  C_  B ) ) )
6 simp1l 1029 . . . . . . . . 9  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  J  e. Locally  A )
7 simp2l 1031 . . . . . . . . 9  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  x  e.  J )
8 simp3 1007 . . . . . . . . 9  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  y  e.  x )
9 llyi 20475 . . . . . . . . 9  |-  ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  ->  E. v  e.  J  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) )
106, 7, 8, 9syl3anc 1264 . . . . . . . 8  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  E. v  e.  J  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) )
11 simprl 762 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  v  e.  J
)
12 simprr1 1053 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  v  C_  x
)
13 simpl2r 1059 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  x  C_  B
)
1412, 13sstrd 3474 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  v  C_  B
)
156, 1syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  J  e.  Top )
1615adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  J  e.  Top )
17 simpl1r 1057 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  B  e.  J
)
18 restopn2 20179 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  ( v  e.  ( Jt  B )  <->  ( v  e.  J  /\  v  C_  B ) ) )
1916, 17, 18syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  ( v  e.  ( Jt  B )  <->  ( v  e.  J  /\  v  C_  B ) ) )
2011, 14, 19mpbir2and 930 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  v  e.  ( Jt  B ) )
21 selpw 3986 . . . . . . . . . . . . 13  |-  ( v  e.  ~P x  <->  v  C_  x )
2212, 21sylibr 215 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  v  e.  ~P x )
2320, 22elind 3650 . . . . . . . . . . 11  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  v  e.  ( ( Jt  B )  i^i  ~P x ) )
24 simprr2 1054 . . . . . . . . . . 11  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  y  e.  v )
25 restabs 20167 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  v  C_  B  /\  B  e.  J )  ->  (
( Jt  B )t  v )  =  ( Jt  v ) )
2616, 14, 17, 25syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  ( ( Jt  B )t  v )  =  ( Jt  v ) )
27 simprr3 1055 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  ( Jt  v )  e.  A )
2826, 27eqeltrd 2510 . . . . . . . . . . 11  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  ( ( Jt  B )t  v )  e.  A
)
2923, 24, 28jca32 537 . . . . . . . . . 10  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  ( v  e.  ( ( Jt  B )  i^i  ~P x )  /\  ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A ) ) )
3029ex 435 . . . . . . . . 9  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  ( (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) )  -> 
( v  e.  ( ( Jt  B )  i^i  ~P x )  /\  (
y  e.  v  /\  ( ( Jt  B )t  v )  e.  A ) ) ) )
3130reximdv2 2896 . . . . . . . 8  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  ( E. v  e.  J  (
v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A )  ->  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) ) )
3210, 31mpd 15 . . . . . . 7  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) )
33323expa 1205 . . . . . 6  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B ) )  /\  y  e.  x )  ->  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  (
( Jt  B )t  v )  e.  A ) )
3433ralrimiva 2839 . . . . 5  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B ) )  ->  A. y  e.  x  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) )
3534ex 435 . . . 4  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  ( ( x  e.  J  /\  x  C_  B )  ->  A. y  e.  x  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) ) )
365, 35sylbid 218 . . 3  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  ( x  e.  ( Jt  B )  ->  A. y  e.  x  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) ) )
3736ralrimiv 2837 . 2  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  A. x  e.  ( Jt  B ) A. y  e.  x  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) )
38 islly 20469 . 2  |-  ( ( Jt  B )  e. Locally  A  <->  ( ( Jt  B )  e.  Top  /\ 
A. x  e.  ( Jt  B ) A. y  e.  x  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) ) )
393, 37, 38sylanbrc 668 1  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  ( Jt  B )  e. Locally  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   A.wral 2775   E.wrex 2776    i^i cin 3435    C_ wss 3436   ~Pcpw 3979  (class class class)co 6301   ↾t crest 15306   Topctop 19903  Locally clly 20465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-oadd 7190  df-er 7367  df-en 7574  df-fin 7577  df-fi 7927  df-rest 15308  df-topgen 15329  df-top 19907  df-bases 19908  df-topon 19909  df-lly 20467
This theorem is referenced by:  loclly  20488  llyidm  20489
  Copyright terms: Public domain W3C validator