MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyrest Structured version   Unicode version

Theorem llyrest 20155
Description: An open subspace of a locally  A space is also locally  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyrest  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  ( Jt  B )  e. Locally  A )

Proof of Theorem llyrest
Dummy variables  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 20142 . . 3  |-  ( J  e. Locally  A  ->  J  e. 
Top )
2 resttop 19831 . . 3  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  ( Jt  B )  e.  Top )
31, 2sylan 469 . 2  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  ( Jt  B )  e.  Top )
4 restopn2 19848 . . . . 5  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  ( x  e.  ( Jt  B )  <->  ( x  e.  J  /\  x  C_  B ) ) )
51, 4sylan 469 . . . 4  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  ( x  e.  ( Jt  B )  <->  ( x  e.  J  /\  x  C_  B ) ) )
6 simp1l 1018 . . . . . . . . 9  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  J  e. Locally  A )
7 simp2l 1020 . . . . . . . . 9  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  x  e.  J )
8 simp3 996 . . . . . . . . 9  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  y  e.  x )
9 llyi 20144 . . . . . . . . 9  |-  ( ( J  e. Locally  A  /\  x  e.  J  /\  y  e.  x )  ->  E. v  e.  J  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) )
106, 7, 8, 9syl3anc 1226 . . . . . . . 8  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  E. v  e.  J  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) )
11 simprl 754 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  v  e.  J
)
12 simprr1 1042 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  v  C_  x
)
13 simpl2r 1048 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  x  C_  B
)
1412, 13sstrd 3499 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  v  C_  B
)
156, 1syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  J  e.  Top )
1615adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  J  e.  Top )
17 simpl1r 1046 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  B  e.  J
)
18 restopn2 19848 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  B  e.  J )  ->  ( v  e.  ( Jt  B )  <->  ( v  e.  J  /\  v  C_  B ) ) )
1916, 17, 18syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  ( v  e.  ( Jt  B )  <->  ( v  e.  J  /\  v  C_  B ) ) )
2011, 14, 19mpbir2and 920 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  v  e.  ( Jt  B ) )
21 selpw 4006 . . . . . . . . . . . . 13  |-  ( v  e.  ~P x  <->  v  C_  x )
2212, 21sylibr 212 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  v  e.  ~P x )
2320, 22elind 3674 . . . . . . . . . . 11  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  v  e.  ( ( Jt  B )  i^i  ~P x ) )
24 simprr2 1043 . . . . . . . . . . 11  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  y  e.  v )
25 restabs 19836 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  v  C_  B  /\  B  e.  J )  ->  (
( Jt  B )t  v )  =  ( Jt  v ) )
2616, 14, 17, 25syl3anc 1226 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  ( ( Jt  B )t  v )  =  ( Jt  v ) )
27 simprr3 1044 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  ( Jt  v )  e.  A )
2826, 27eqeltrd 2542 . . . . . . . . . . 11  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  ( ( Jt  B )t  v )  e.  A
)
2923, 24, 28jca32 533 . . . . . . . . . 10  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x )  /\  (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) ) )  ->  ( v  e.  ( ( Jt  B )  i^i  ~P x )  /\  ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A ) ) )
3029ex 432 . . . . . . . . 9  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  ( (
v  e.  J  /\  ( v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A ) )  -> 
( v  e.  ( ( Jt  B )  i^i  ~P x )  /\  (
y  e.  v  /\  ( ( Jt  B )t  v )  e.  A ) ) ) )
3130reximdv2 2925 . . . . . . . 8  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  ( E. v  e.  J  (
v  C_  x  /\  y  e.  v  /\  ( Jt  v )  e.  A )  ->  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) ) )
3210, 31mpd 15 . . . . . . 7  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B )  /\  y  e.  x
)  ->  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) )
33323expa 1194 . . . . . 6  |-  ( ( ( ( J  e. Locally  A  /\  B  e.  J
)  /\  ( x  e.  J  /\  x  C_  B ) )  /\  y  e.  x )  ->  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  (
( Jt  B )t  v )  e.  A ) )
3433ralrimiva 2868 . . . . 5  |-  ( ( ( J  e. Locally  A  /\  B  e.  J )  /\  ( x  e.  J  /\  x  C_  B ) )  ->  A. y  e.  x  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) )
3534ex 432 . . . 4  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  ( ( x  e.  J  /\  x  C_  B )  ->  A. y  e.  x  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) ) )
365, 35sylbid 215 . . 3  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  ( x  e.  ( Jt  B )  ->  A. y  e.  x  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) ) )
3736ralrimiv 2866 . 2  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  A. x  e.  ( Jt  B ) A. y  e.  x  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) )
38 islly 20138 . 2  |-  ( ( Jt  B )  e. Locally  A  <->  ( ( Jt  B )  e.  Top  /\ 
A. x  e.  ( Jt  B ) A. y  e.  x  E. v  e.  ( ( Jt  B )  i^i  ~P x ) ( y  e.  v  /\  ( ( Jt  B )t  v )  e.  A
) ) )
393, 37, 38sylanbrc 662 1  |-  ( ( J  e. Locally  A  /\  B  e.  J )  ->  ( Jt  B )  e. Locally  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805    i^i cin 3460    C_ wss 3461   ~Pcpw 3999  (class class class)co 6270   ↾t crest 14913   Topctop 19564  Locally clly 20134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-oadd 7126  df-er 7303  df-en 7510  df-fin 7513  df-fi 7863  df-rest 14915  df-topgen 14936  df-top 19569  df-bases 19571  df-topon 19572  df-lly 20136
This theorem is referenced by:  loclly  20157  llyidm  20158
  Copyright terms: Public domain W3C validator